A346738
Expansion of e.g.f.: exp(exp(x) - 3*x - 1).
Original entry on oeis.org
1, -2, 5, -13, 36, -101, 293, -848, 2523, -7365, 22402, -64395, 205285, -541802, 2057617, -3403993, 28685420, 43885023, 824532745, 4878097904, 44263112047, 357891860463, 3169228222338, 28506399763969, 266822555964441, 2573194635922990, 25606751525353741
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50);
Coefficients(R!(Laplace( Exp(Exp(x)-3*x-1) ))) // G. C. Greubel, Jun 12 2024
-
nmax = 26; CoefficientList[Series[Exp[Exp[x] - 3 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k], {k, 0, n}], {n, 0, 26}]
a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]
-
[factorial(n)*( exp(exp(x)-3*x-1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
A290219
a(n) = n! * [x^n] exp(exp(x) - n*x - 1).
Original entry on oeis.org
1, 0, 2, -13, 127, -1573, 23711, -421356, 8626668, -199971255, 5177291275, -148078588667, 4636966634653, -157786054331852, 5797411243015250, -228749440644895405, 9646951350227609155, -433035586385769361001, 20614401475233006857035, -1037331650810058231498688
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50);
A290219:= func< n | Coefficient(R!(Laplace( Exp(Exp(x)-n*x-1) )), n) >;
[A290219(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
-
b:= proc(n, k) option remember; `if`(n=0, 1,
k*b(n-1, k)+ b(n-1, k+1))
end:
a:= n-> b(n, -n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
-
Table[n! SeriesCoefficient[Exp[Exp[x] - n x - 1], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n, k] BellB[k] , {k, 0, n}], {n, 1, 19}]]
-
[factorial(n)*( exp(exp(x) -n*x -1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
A196835
Alternating row sums of Sheffer triangle A193685 (5-restricted Stirling2 numbers).
Original entry on oeis.org
1, 4, 15, 51, 146, 273, -319, -6374, -36235, -113833, 69388, 3772035, 28631669, 112704452, -96418909, -5652669753, -50538496446, -230554460867, 281597003109, 16303457144146, 166512491229617, 872578914956059, -1111135578108284, -78512971676777833, -919653124088665479
Offset: 0
A346739
Expansion of e.g.f.: exp(exp(x) - 4*x - 1).
Original entry on oeis.org
1, -3, 10, -35, 127, -472, 1787, -6855, 26572, -103765, 407695, -1608378, 6369117, -25271183, 100542930, -400114103, 1597052419, -6359524256, 25481982047, -101103395443, 409291679676, -1592903606657, 6729506287091, -23748796926026, 123501587468073, -227183793907851
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(Exp(x) -4*x -1) ))) // G. C. Greubel, Jun 12 2024
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 4 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] (-4)^(n - k) BellB[k], {k, 0, n}], {n, 0, 25}]
a[0] = 1; a[n_] := a[n] = -4 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
-
[factorial(n)*( exp(exp(x) -4*x -1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
A361781
A(n,k) is the n-th term of the k-th inverse binomial transform of the Bell numbers (A000110); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 5, 1, -2, 2, 1, 15, 1, -3, 5, -3, 4, 52, 1, -4, 10, -13, 7, 11, 203, 1, -5, 17, -35, 36, -10, 41, 877, 1, -6, 26, -75, 127, -101, 31, 162, 4140, 1, -7, 37, -139, 340, -472, 293, -21, 715, 21147, 1, -8, 50, -233, 759, -1573, 1787, -848, 204, 3425, 115975
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, -6, ...
2, 1, 2, 5, 10, 17, 26, 37, ...
5, 1, -3, -13, -35, -75, -139, -233, ...
15, 4, 7, 36, 127, 340, 759, 1492, ...
52, 11, -10, -101, -472, -1573, -4214, -9685, ...
203, 41, 31, 293, 1787, 7393, 23711, 63581, ...
877, 162, -21, -848, -6855, -35178, -134873, -421356, ...
-
T:= func< n,k | (&+[(-k)^j*Binomial(n,j)*Bell(n-j): j in [0..n]]) >;
A361781:= func< n,k | T(k, n-k) >;
[A361781(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
A:= proc(n, k) option remember; uses combinat;
add(binomial(n, j)*(-k)^j*bell(n-j), j=0..n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
A:= (n, k)-> b(n, -k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
T[n_, k_]:= T[n, k]= If[k==0, BellB[n], Sum[(-k)^j*Binomial[n,j]*BellB[n-j], {j,0,n}]];
A361781[n_, k_]= T[k, n-k];
Table[A361781[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 12 2024 *)
-
def T(n,k): return sum( (-k)^j*binomial(n,j)*bell_number(n-j) for j in range(n+1))
def A361781(n, k): return T(k, n-k)
flatten([[A361781(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
Showing 1-5 of 5 results.
Comments