A290219
a(n) = n! * [x^n] exp(exp(x) - n*x - 1).
Original entry on oeis.org
1, 0, 2, -13, 127, -1573, 23711, -421356, 8626668, -199971255, 5177291275, -148078588667, 4636966634653, -157786054331852, 5797411243015250, -228749440644895405, 9646951350227609155, -433035586385769361001, 20614401475233006857035, -1037331650810058231498688
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50);
A290219:= func< n | Coefficient(R!(Laplace( Exp(Exp(x)-n*x-1) )), n) >;
[A290219(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
-
b:= proc(n, k) option remember; `if`(n=0, 1,
k*b(n-1, k)+ b(n-1, k+1))
end:
a:= n-> b(n, -n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
-
Table[n! SeriesCoefficient[Exp[Exp[x] - n x - 1], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n, k] BellB[k] , {k, 0, n}], {n, 1, 19}]]
-
[factorial(n)*( exp(exp(x) -n*x -1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
A346739
Expansion of e.g.f.: exp(exp(x) - 4*x - 1).
Original entry on oeis.org
1, -3, 10, -35, 127, -472, 1787, -6855, 26572, -103765, 407695, -1608378, 6369117, -25271183, 100542930, -400114103, 1597052419, -6359524256, 25481982047, -101103395443, 409291679676, -1592903606657, 6729506287091, -23748796926026, 123501587468073, -227183793907851
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(Exp(x) -4*x -1) ))) // G. C. Greubel, Jun 12 2024
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 4 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] (-4)^(n - k) BellB[k], {k, 0, n}], {n, 0, 25}]
a[0] = 1; a[n_] := a[n] = -4 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
-
[factorial(n)*( exp(exp(x) -4*x -1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
A193683
Alternating row sums of Sheffer triangle A143495 (3-restricted Stirling2 numbers).
Original entry on oeis.org
1, 2, 3, 1, -14, -59, -99, 288, 2885, 10365, 1700, -226313, -1535203, -4258630, 17243695, 284513877, 1688253890, 2750940953, -51540956455, -624352447488, -3470378651847, -496964048927, 204678286709292, 2311290490508227, 12611758414937801
Offset: 0
Row no. 3 of A143495 with [0,0] offset is [27,37,12,1], hence a(3)=27-37+12-1=1.
-
With[{nn=30},CoefficientList[Series[Exp[3x+1-Exp[x]],{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Jan 10 2013 *)
A346740
Expansion of e.g.f.: exp(exp(x) - 5*x - 1).
Original entry on oeis.org
1, -4, 17, -75, 340, -1573, 7393, -35178, 169035, -818603, 3989250, -19538555, 96084397, -474052868, 2344993157, -11624422855, 57722000172, -287012948441, 1428705217949, -7118044107698, 35489117143047, -177036294035559, 883588566571138, -4411213326568599, 22032317835916969
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(Exp(x) -5*x -1) ))) // G. C. Greubel, Jun 12 2024
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 5 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] (-5)^(n - k) BellB[k], {k, 0, n}], {n, 0, 24}]
a[0] = 1; a[n_] := a[n] = -5 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
-
[factorial(n)*( exp(exp(x) -5*x -1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
A361781
A(n,k) is the n-th term of the k-th inverse binomial transform of the Bell numbers (A000110); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 5, 1, -2, 2, 1, 15, 1, -3, 5, -3, 4, 52, 1, -4, 10, -13, 7, 11, 203, 1, -5, 17, -35, 36, -10, 41, 877, 1, -6, 26, -75, 127, -101, 31, 162, 4140, 1, -7, 37, -139, 340, -472, 293, -21, 715, 21147, 1, -8, 50, -233, 759, -1573, 1787, -848, 204, 3425, 115975
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, -6, ...
2, 1, 2, 5, 10, 17, 26, 37, ...
5, 1, -3, -13, -35, -75, -139, -233, ...
15, 4, 7, 36, 127, 340, 759, 1492, ...
52, 11, -10, -101, -472, -1573, -4214, -9685, ...
203, 41, 31, 293, 1787, 7393, 23711, 63581, ...
877, 162, -21, -848, -6855, -35178, -134873, -421356, ...
-
T:= func< n,k | (&+[(-k)^j*Binomial(n,j)*Bell(n-j): j in [0..n]]) >;
A361781:= func< n,k | T(k, n-k) >;
[A361781(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
A:= proc(n, k) option remember; uses combinat;
add(binomial(n, j)*(-k)^j*bell(n-j), j=0..n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
A:= (n, k)-> b(n, -k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
T[n_, k_]:= T[n, k]= If[k==0, BellB[n], Sum[(-k)^j*Binomial[n,j]*BellB[n-j], {j,0,n}]];
A361781[n_, k_]= T[k, n-k];
Table[A361781[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 12 2024 *)
-
def T(n,k): return sum( (-k)^j*binomial(n,j)*bell_number(n-j) for j in range(n+1))
def A361781(n, k): return T(k, n-k)
flatten([[A361781(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
A367890
Expansion of e.g.f. exp(3*(exp(x) - 1 - x)).
Original entry on oeis.org
1, 0, 3, 3, 30, 93, 633, 3342, 22809, 156063, 1183872, 9453711, 80455125, 721576560, 6809391111, 67332650007, 695777512638, 7493572404345, 83926492573341, 975467527353750, 11744536832206149, 146234590864310019, 1880198749437144456, 24928860500681953683
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023
A367921
Expansion of e.g.f. exp(4*(exp(x) - 1) - 3*x).
Original entry on oeis.org
1, 1, 5, 17, 93, 505, 3269, 22657, 172461, 1407177, 12284629, 113832273, 1114775869, 11487315481, 124118143717, 1401808691489, 16504815145421, 202101235848297, 2568312461002741, 33808677627863537, 460227870278020957, 6468672644291075001, 93745096205219336709
Offset: 0
-
b:= proc(n, k, m) option remember; `if`(n=0, 4^m, `if`(k>0,
b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..22); # Alois P. Heinz, Apr 29 2025
-
nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1) - 3 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
A367818
Expansion of e.g.f. exp(1 - 3*x - exp(x)).
Original entry on oeis.org
1, -4, 15, -53, 178, -575, 1809, -5598, 17141, -52113, 157724, -475997, 1433429, -4311364, 12958627, -38909601, 116831426, -350844883, 1051414421, -3160120038, 9491592177, -28218244109, 86403627444, -255153772169, 722619907385, -2772952748516, 4627276967623, -17420488524253
Offset: 0
-
nmax = 27; CoefficientList[Series[Exp[1 - 3 x - Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -3 a[n - 1] - Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 27}]
Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, -1], {k, 0, n}], {n, 0, 27}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(1 - 3*x - exp(x)))) \\ Michel Marcus, Dec 02 2023
A367940
Expansion of e.g.f. exp(exp(4*x) - 1 - 3*x).
Original entry on oeis.org
1, 1, 17, 113, 1377, 17185, 252401, 4104721, 73500609, 1430779713, 30026750161, 674586467505, 16130795165473, 408560492670049, 10915540174130353, 306531211899158609, 9019774516570506113, 277345675943850865281, 8889954225208868308369, 296408283056785166556401
Offset: 0
-
nmax = 19; CoefficientList[Series[Exp[Exp[4 x] - 1 - 3 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
Table[Sum[Binomial[n, k] (-3)^(n - k) 4^k BellB[k], {k, 0, n}], {n, 0, 19}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(4*x) - 1 - 3*x))) \\ Michel Marcus, Dec 07 2023
Showing 1-9 of 9 results.
Comments