cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A347473 Maximum number of nonzero entries allowed in an n X n matrix to ensure there is a 3 X 3 zero submatrix.

Original entry on oeis.org

0, 2, 4, 9, 15, 21, 31, 39, 51, 63, 76, 90, 104, 127
Offset: 3

Views

Author

M. F. Hasler, Sep 28 2021

Keywords

Comments

Related to Zarankiewicz's problem k_3(n) (cf. A001198 and other crossrefs), which asks the converse: how many 1's must be in an n X n {0,1}-matrix in order to guarantee the existence of an all-ones 3 X 3 submatrix. This complementarity leads to the given formula which was used to compute the given values.

Examples

			For n = 3, there must not be any nonzero entry in an n X n = 3 X 3 matrix, if one wants a 3 X 3 zero submatrix, whence a(3) = 0.
For n = 4, having at most 2 nonzero entries in the n X n matrix guarantees that there is a 3 X 3 zero submatrix (delete, e.g., the row which has the first nonzero entry, then the column with the remaining nonzero entry, if any), but if one allows 3 nonzero entries and they are placed on the diagonal, then there is no 3 X 3 zero submatrix. Hence, a(4) = 2.
		

Crossrefs

Cf. A001198 (k_3(n)), A001197 (k_2(n)), A006613 - A006626 (other sizes of the main matrix and the submatrix).
Cf. A347472, A347474 (analog for 2 X 2 resp. 4 X 4 zero submatrix).

Formula

a(n) = n^2 - A001198(n).
a(n) = A350237(n) - 1. - Andrew Howroyd, Dec 24 2021
a(n) = n^2 - A350304(n) - 1. - Max Alekseyev, Oct 31 2022

Extensions

a(11)-a(13) from Andrew Howroyd, Dec 24 2021
a(14)-a(16) computed from A350237 by Max Alekseyev, Apr 01 2022, Oct 31 2022

A339635 Triangle read by rows, T(n, k) is the least number of 1's in an n X n binary matrix so that every k X k minor contains at least one 1.

Original entry on oeis.org

1, 4, 1, 9, 3, 1, 16, 7, 3, 1, 25, 13, 5, 3, 1, 36, 20, 10, 5, 3, 1, 49, 28, 16, 7, 5, 3, 1, 64, 40, 22, 13, 7, 5, 3, 1, 81, 52, 32, 20, 9, 7, 5, 3, 1, 100, 66, 40, 26, 16, 9, 7, 5, 3, 1, 121, 82, 52, 35, 23, 11, 9, 7, 5, 3, 1, 144, 99, 64, 44, 30, 19, 11, 9, 7, 5, 3, 1
Offset: 1

Views

Author

Michel Marcus, Dec 11 2020

Keywords

Comments

This sequence is related to the Zarankiewicz problem. In particular, T(n,k) = n^2 - z(n,n; k,k) where z(m,n; s,t) is the Zarankiewicz function. (Here the Zarankiewicz function is as defined on Wikipedia. A number of OEIS sequences use a definition that is 1 greater). - Andrew Howroyd, Dec 23 2021
The terms represent solutions for a certain covering problem. k X k Minors are 'squaresets' in the Cartesian product rows X columns, i.e., subsets A X B with A subset of rows and B subset of columns, and with card(A) = card(B) = k. - Rainer Rosenthal, Dec 18 2022

Examples

			Triangle begins:
    1;
    4,  1;
    9,  3,  1;
   16,  7,  3,  1;
   25, 13,  5,  3,  1;
   36, 20, 10,  5,  3,  1;
   49, 28, 16,  7,  5,  3,  1;
   64, 40, 22, 13,  7,  5,  3, 1;
   81, 52, 32, 20,  9,  7,  5, 3, 1;
  100, 66, 40, 26, 16,  9,  7, 5, 3, 1;
  121, 82, 52, 35, 23, 11,  9, 7, 5, 3, 1;
  144, 99, 64, 44, 30, 19, 11, 9, 7, 5, 3, 1;
   ...
From _Rainer Rosenthal_, Dec 18 2022: (Start)
T(3,2) = 3 is visualized in short form in the example section of A350296. Here is a longer explanation, showing all the 2 X 2 minors of the 3 X 3 matrix:
.
       . . .      . . .      . . .
       . A A      B . B      C C .
       . A A      B . B      C C .
.
       . D D      E . E      F F .
       . . .      . . .      . . .
       . D D      E . E      F F .
.
       . G G      H . H      I I .
       . G G      H . H      I I .
       . . .      . . .      . . .
.
One can easily check that three 1's on a diagonal are enough to guarantee that each minor covers at least one of them. The diagonals are given by any of these two matrices:
.
        1 0 0         0 0 1
        0 1 0   and   0 1 0
        0 0 1         1 0 0
.
Evidently at least three 1's are needed, therefore we have T(3,2) = 3. (End)
		

Crossrefs

Columns 1..3 are A000290, A350296, A350237.

Formula

T(n, 1) = n^2; T(n, n) = 1; T(2*n, n) = 3*n+1 = A016777(n).
T(n, k) = 2*(n-k) + 1 for k > n/2. - Andrew Howroyd, Dec 23 2021

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 22 2021

A006616 Zarankiewicz's problem k_4(n).

Original entry on oeis.org

16, 23, 32, 43, 52, 62, 75, 87, 101, 118
Offset: 4

Views

Author

Keywords

Comments

a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all ones 4 X 4 submatrix. - Sean A. Irvine, May 17 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = n^2 - A347474(n). - Andrew Howroyd, Dec 26 2021

Extensions

a(9)-a(13) from Andrew Howroyd, Dec 26 2021

A006620 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all-ones 2 X 2 submatrix.

Original entry on oeis.org

5, 8, 11, 15, 19, 23, 27, 32, 37, 43, 49, 54, 59, 64
Offset: 2

Views

Author

Keywords

Comments

a(n) <= A205805(2*n+1) + 1. - Max Alekseyev, Feb 02 2024

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine by Max Alekseyev, Feb 02 2024

A347472 Maximum number of nonzero entries allowed in an n X n matrix to ensure there is a 2 X 2 zero submatrix.

Original entry on oeis.org

0, 2, 6, 12, 19, 27, 39, 51, 65, 81, 98, 116, 139, 163, 188, 214, 242, 272, 303, 335, 375, 413, 453
Offset: 2

Views

Author

M. F. Hasler, Sep 28 2021

Keywords

Comments

Related to Zarankiewicz's problem k_2(n) (cf. A001197 and other crossrefs) which asks the converse: how many 1's must be in an n X n {0,1}-matrix in order to guarantee the existence of an all-ones 2 X 2 submatrix. This complementarity leads to the given formula which was used to compute the given values.
See A347473 and A347474 for the similar problem with a 3 X 3 resp. 4 X 4 zero submatrix.

Examples

			For n = 2, there must not be any nonzero entry in an n X n = 2 X 2 matrix, if one wants a 2 X 2 zero submatrix, whence a(2) = 0.
For n = 3, having at most 2 nonzero entries in the n X n matrix still guarantees that there is a 2 X 2 zero submatrix (delete the row of the first nonzero entry and then the column of the remaining nonzero entry, if any), but if one allows 3 nonzero entries and they are placed on the diagonal, then there is no 2 X 2 zero submatrix. Hence, a(3) = 2.
		

Crossrefs

Cf. A001197 (k_2(n)), A001198 (k_3(n)), A006613 - A006626.
Cf. A347473, A347474 (analog for 3 X 3 resp. 4 X 4 zero submatrix).
Cf. A350296.

Formula

a(n) = n^2 - A001197(n).
a(n) = A350296(n) - 1. - Andrew Howroyd, Dec 23 2021

Extensions

a(22)-a(24) computed from A001197 by Max Alekseyev, Feb 08 2022

A006614 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all-ones 2 X 4 submatrix.

Original entry on oeis.org

14, 21, 26, 32, 41, 48, 56, 67
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name updated at the suggestion of Sean A. Irvine by Max Alekseyev, Feb 02 2024

A006615 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

15, 22, 31, 38, 46, 57
Offset: 4

Views

Author

Keywords

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine and a(9) added by Max Alekseyev, Feb 02 2024

A006622 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

12, 18, 26, 33, 41, 51
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name edited at the suggestion of Sean A. Irvine and a(8) added by Max Alekseyev, Feb 02 2024

A006625 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+2) {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

14, 21, 28, 36, 45, 55
Offset: 3

Views

Author

Keywords

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine and a(8) added by Max Alekseyev, Feb 02 2024
Showing 1-9 of 9 results.