A349972
a(n) = A349976(n, n-1) for n >= 1 and a(0) = 0.
Original entry on oeis.org
0, 1, 2, 3, 2, 8, 10, 25, 49, 93, 187, 377, 747, 1472, 2975, 5911, 11880, 23734, 47474, 94885, 190623, 380805, 763402, 1528095, 3061916, 6125358, 12278446, 24564954, 49200792, 98478615, 197164774, 394536002, 789993459, 1580640910, 3163602123, 6330608624, 12668987317
Offset: 0
A349973
a(n) = Sum_{k=0..n} k*A349976(n, k).
Original entry on oeis.org
0, 1, 4, 12, 34, 89, 226, 554, 1328, 3104, 7158, 16235, 36420, 80797, 177789, 387968, 841696, 1814473, 3892920, 8313588, 17686711, 37486091, 79213997, 166888364, 350720648, 735273025, 1538259673, 3211682091, 6693935172, 13928034709, 28936571039, 60032053097
Offset: 0
A349974
a(n) = 1 + Sum_{k=0..n} (2*k - 1)*A349976(n, k).
Original entry on oeis.org
0, 1, 5, 17, 53, 147, 389, 981, 2401, 5697, 13293, 30423, 68745, 153403, 339195, 743169, 1617857, 3497875, 7523697, 16102889, 34324847, 72875031, 154233691, 325388121, 684664081, 1436991619, 3009410483, 6289146455, 13119434889, 27319198507, 56799400255, 117916622547
Offset: 0
A103295
Number of complete rulers with length n.
Original entry on oeis.org
1, 1, 1, 3, 4, 9, 17, 33, 63, 128, 248, 495, 988, 1969, 3911, 7857, 15635, 31304, 62732, 125501, 250793, 503203, 1006339, 2014992, 4035985, 8080448, 16169267, 32397761, 64826967, 129774838, 259822143, 520063531, 1040616486, 2083345793, 4168640894, 8342197304, 16694070805, 33404706520, 66832674546, 133736345590
Offset: 0
a(4) = 4 counts the complete rulers with length 4, {[0,2,3,4],[0,1,3,4],[0,1,2,4],[0,1,2,3,4]}.
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..49
- Scott Harvey-Arnold, Steven J. Miller, and Fei Peng, Distribution of missing differences in diffsets, arXiv:2001.08931 [math.CO], 2020.
- Peter Luschny, Perfect rulers
- Hugo Pfoertner, Count complete rulers of given length. FORTRAN program.
- Index entries for sequences related to perfect rulers.
- Gus Wiseman, Illustration of A103295.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SubsetQ[ReplaceList[#,{_,s__,_}:>Plus[s]],Range[n]]&]],{n,0,15}] (* Gus Wiseman, May 17 2019 *)
A350103
Triangle read by rows. Number of self-measuring subsets of the initial segment of the natural numbers strictly below n and cardinality k. Number of subsets S of [n] with S = distset(S) and |S| = k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 1]
[ 2] [1, 1, 1]
[ 3] [1, 1, 2, 1]
[ 4] [1, 1, 3, 1, 1]
[ 5] [1, 1, 4, 2, 1, 1]
[ 6] [1, 1, 5, 2, 1, 1, 1]
[ 7] [1, 1, 6, 3, 2, 1, 1, 1]
[ 8] [1, 1, 7, 3, 2, 1, 1, 1, 1]
[ 9] [1, 1, 8, 4, 2, 2, 1, 1, 1, 1]
[10] [1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1]
[11] [1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1]
[12] [1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1]
.
The first column is 1,1,... because {} = distset({}) and |{}| = 0.
The second column is 1,1,... because {0} = distset({0}) and |{0}| = 1.
The third column is n-1 because {0, j} = distset({0, j}) and |{0, j}| = 2 for j = 1..n - 1.
The main diagonal is 1,1,... because [n] = distset([n]) and |[n]| = n (these are the complete rulers A103295).
-
T := (n, k) -> ifelse(k < 2, 1, floor((n - 1) / (k - 1))):
seq(print(seq(T(n, k), k = 0..n)), n = 0..12);
-
distSet[s_] := Union[Map[Abs[Differences[#][[1]]] &, Union[Sort /@ Tuples[s, 2]]]]; T[n_, k_] := Count[Subsets[Range[0, n - 1]], ?((ds = distSet[#]) == # && Length[ds] == k &)]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Amiram Eldar, Dec 16 2021 *)
-
T(n, k) = if(k<=1, 1, (n - 1) \ (k - 1)) \\ Winston de Greef, Jan 31 2024
-
# generating and counting (slow)
def isSelfMeasuring(R):
S, L = Set([]), len(R)
R = Set([r - 1 for r in R])
for i in range(L):
for j in (0..i):
S = S.union(Set([abs(R[i] - R[i - j])]))
return R == S
def A349976row(n):
counter = [0] * (n + 1)
for S in Subsets(n):
if isSelfMeasuring(S): counter[len(S)] += 1
return counter
for n in range(10): print(A349976row(n))
A350102
Number of self-measuring subsets of the initial segment of the natural numbers strictly below n. Number of subsets S of [n] with S = distset(S).
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 12, 16, 18, 22, 25, 29, 31, 37, 39, 43, 47, 52, 54, 60, 62, 68, 72, 76, 78, 86, 89, 93, 97, 103, 105, 113, 115, 121, 125, 129, 133, 142, 144, 148, 152, 160, 162, 170, 172, 178, 184, 188, 190, 200, 203, 209, 213, 219, 221, 229, 233, 241, 245
Offset: 0
a(0) = 1 = card({}).
a(4) = 7 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 2, 3}).
a(6) = 12 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 1, 2}, {0, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5}).
-
A350102 := n -> ifelse(n = 0, 1, 2 + add(iquo(n-1, k), k = 1 .. n-1)):
seq(A350102(n), n = 0 .. 58);
-
a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + DivisorSigma[0, n - 1];
Table[a[n], {n, 0, 58}]
A350105
Number of subsets of the initial segment of the natural numbers strictly below n which are not self-measuring. Number of subsets S of [n] with S != distset(S).
Original entry on oeis.org
0, 0, 1, 3, 9, 22, 52, 112, 238, 490, 999, 2019, 4065, 8155, 16345, 32725, 65489, 131020, 262090, 524228, 1048514, 2097084, 4194232, 8388532, 16777138, 33554346, 67108775, 134217635, 268435359, 536870809, 1073741719, 2147483535, 4294967181, 8589934471, 17179869059
Offset: 0
A349975
Expansion of g.f. (x^4*(x^2 + 2*x + 3))/((x - 1)^4*(x + 1)*(x^2 + x + 1)).
Original entry on oeis.org
0, 0, 0, 0, 3, 8, 17, 31, 51, 77, 112, 155, 208, 272, 348, 436, 539, 656, 789, 939, 1107, 1293, 1500, 1727, 1976, 2248, 2544, 2864, 3211, 3584, 3985, 4415, 4875, 5365, 5888, 6443, 7032, 7656, 8316, 9012, 9747, 10520, 11333, 12187, 13083, 14021, 15004, 16031, 17104
Offset: 0
Original entry on oeis.org
1, 3, 6, 11, 18, 28, 40, 56, 74, 96, 121, 150, 181, 218, 257, 300, 347, 399, 453, 513, 575, 643, 715, 791, 869, 955, 1044, 1137, 1234, 1337, 1442, 1555, 1670, 1791, 1916, 2045, 2178, 2320, 2464, 2612, 2764, 2924, 3086, 3256, 3428, 3606, 3790, 3978, 4168, 4368
Offset: 0
A350324
Missing even distances in full prime rulers, i.e., even numbers k, 0 < k < p-3 for some prime p, such that k is not the difference of two primes less than or equal to p.
Original entry on oeis.org
88, 112, 118, 140, 182, 202, 214, 242, 284, 292, 298, 316, 322, 338, 358, 388, 400, 410, 422, 448, 470, 478, 490, 512, 526, 532, 548, 578, 622, 632, 664, 682, 692, 700, 710, 718, 742, 760, 772, 778, 788, 800, 812, 830, 838, 844, 862, 868, 886, 892, 898, 910, 920, 928, 952, 958, 982, 1000, 1022, 1040, 1052, 1072, 1078, 1108, 1130, 1136, 1142, 1154, 1162, 1172, 1192, 1204
Offset: 1
a(1) = 88 < p - 3 for prime number p = 97, and there are no primes p1, p2 <= p with 88 = p1 - p2.
-
primedist := n -> {seq(2*j, j = 0..(ithprime(n) - 3)/2)} minus `union`(seq({seq(abs(ithprime(j) - ithprime(k)), k = 1..j)}, j = 1..n)):
`union`(seq(primedist(j), j = 1..200)); # Peter Luschny, Dec 24 2021
-
genit(maxx=1300)={arr=List();forstep(x=2,maxx,2,q=nextprime(x+2);if(!isprime(q-x),listput(arr,x)));arr;} \\ Bill McEachen, Feb 09 2022
Showing 1-10 of 10 results.
Comments