cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A349972 a(n) = A349976(n, n-1) for n >= 1 and a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 2, 8, 10, 25, 49, 93, 187, 377, 747, 1472, 2975, 5911, 11880, 23734, 47474, 94885, 190623, 380805, 763402, 1528095, 3061916, 6125358, 12278446, 24564954, 49200792, 98478615, 197164774, 394536002, 789993459, 1580640910, 3163602123, 6330608624, 12668987317
Offset: 0

Views

Author

Peter Luschny, Dec 12 2021

Keywords

Crossrefs

Cf. A349976.

Programs

  • SageMath
    # Uses function DistsetLength from A349976.
    from collections import Counter
    def A349972(n): return Counter([DistsetLength(s) for s in Subsets(n)])[n-1]
    print([A349972(n) for n in range(10)])

A349973 a(n) = Sum_{k=0..n} k*A349976(n, k).

Original entry on oeis.org

0, 1, 4, 12, 34, 89, 226, 554, 1328, 3104, 7158, 16235, 36420, 80797, 177789, 387968, 841696, 1814473, 3892920, 8313588, 17686711, 37486091, 79213997, 166888364, 350720648, 735273025, 1538259673, 3211682091, 6693935172, 13928034709, 28936571039, 60032053097
Offset: 0

Views

Author

Peter Luschny, Dec 12 2021

Keywords

Crossrefs

Cf. A349976.

A349974 a(n) = 1 + Sum_{k=0..n} (2*k - 1)*A349976(n, k).

Original entry on oeis.org

0, 1, 5, 17, 53, 147, 389, 981, 2401, 5697, 13293, 30423, 68745, 153403, 339195, 743169, 1617857, 3497875, 7523697, 16102889, 34324847, 72875031, 154233691, 325388121, 684664081, 1436991619, 3009410483, 6289146455, 13119434889, 27319198507, 56799400255, 117916622547
Offset: 0

Views

Author

Peter Luschny, Dec 10 2021, following a suggestion from Alois P. Heinz

Keywords

Crossrefs

A103295 Number of complete rulers with length n.

Original entry on oeis.org

1, 1, 1, 3, 4, 9, 17, 33, 63, 128, 248, 495, 988, 1969, 3911, 7857, 15635, 31304, 62732, 125501, 250793, 503203, 1006339, 2014992, 4035985, 8080448, 16169267, 32397761, 64826967, 129774838, 259822143, 520063531, 1040616486, 2083345793, 4168640894, 8342197304, 16694070805, 33404706520, 66832674546, 133736345590
Offset: 0

Views

Author

Peter Luschny, Feb 28 2005

Keywords

Comments

For definitions, references and links related to complete rulers see A103294.
Also the number of compositions of n whose consecutive subsequence-sums cover an initial interval of the positive integers. For example, (2,3,1) is such a composition because (1), (2), (3), (3,1), (2,3), and (2,3,1) are subsequences with sums covering {1..6}. - Gus Wiseman, May 17 2019
a(n) ~ c*2^n, where 0.2427 < c < 0.2459. - Fei Peng, Oct 17 2019

Examples

			a(4) = 4 counts the complete rulers with length 4, {[0,2,3,4],[0,1,3,4],[0,1,2,4],[0,1,2,3,4]}.
		

Crossrefs

Cf. A103300 (Perfect rulers with length n). Main diagonal of A349976.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SubsetQ[ReplaceList[#,{_,s__,_}:>Plus[s]],Range[n]]&]],{n,0,15}] (* Gus Wiseman, May 17 2019 *)

Formula

a(n) = Sum_{i=0..n} A103294(n, i) = Sum_{i=A103298(n)..n} A103294(n, i).

Extensions

a(30)-a(36) from Hugo Pfoertner, Mar 17 2005
a(37)-a(38) from Hugo Pfoertner, Dec 10 2021
a(39) from Hugo Pfoertner, Dec 16 2021

A350103 Triangle read by rows. Number of self-measuring subsets of the initial segment of the natural numbers strictly below n and cardinality k. Number of subsets S of [n] with S = distset(S) and |S| = k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Dec 14 2021

Keywords

Comments

We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S).

Examples

			Triangle starts:
[ 0] [1]
[ 1] [1, 1]
[ 2] [1, 1,  1]
[ 3] [1, 1,  2, 1]
[ 4] [1, 1,  3, 1, 1]
[ 5] [1, 1,  4, 2, 1, 1]
[ 6] [1, 1,  5, 2, 1, 1, 1]
[ 7] [1, 1,  6, 3, 2, 1, 1, 1]
[ 8] [1, 1,  7, 3, 2, 1, 1, 1, 1]
[ 9] [1, 1,  8, 4, 2, 2, 1, 1, 1, 1]
[10] [1, 1,  9, 4, 3, 2, 1, 1, 1, 1, 1]
[11] [1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1]
[12] [1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1]
.
The first  column is 1,1,...  because {} = distset({}) and |{}| = 0.
The second column is 1,1,... because {0} = distset({0}) and |{0}| = 1.
The third  column is n-1  because {0, j} = distset({0, j}) and |{0, j}| = 2 for j = 1..n - 1.
The main diagonal is 1,1,... because [n] = distset([n]) and |[n]| = n (these are the complete rulers A103295).
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> ifelse(k < 2, 1, floor((n - 1) / (k - 1))):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..12);
  • Mathematica
    distSet[s_] := Union[Map[Abs[Differences[#][[1]]] &, Union[Sort /@ Tuples[s, 2]]]]; T[n_, k_] := Count[Subsets[Range[0, n - 1]], ?((ds = distSet[#]) == # && Length[ds] == k &)]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Amiram Eldar, Dec 16 2021 *)
  • PARI
    T(n, k) = if(k<=1, 1, (n - 1) \ (k - 1)) \\ Winston de Greef, Jan 31 2024
  • SageMath
    # generating and counting (slow)
    def isSelfMeasuring(R):
        S, L = Set([]), len(R)
        R = Set([r - 1 for r in R])
        for i in range(L):
            for j in (0..i):
                S = S.union(Set([abs(R[i] - R[i - j])]))
        return R == S
    def A349976row(n):
        counter = [0] * (n + 1)
        for S in Subsets(n):
            if isSelfMeasuring(S): counter[len(S)] += 1
        return counter
    for n in range(10): print(A349976row(n))
    

Formula

T(n, k) = floor((n - 1) / (k - 1)) for k >= 2.
T(n, k) = 1 if k = 0 or k = 1 or n >= k >= floor((n + 1)/2).

A350102 Number of self-measuring subsets of the initial segment of the natural numbers strictly below n. Number of subsets S of [n] with S = distset(S).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 12, 16, 18, 22, 25, 29, 31, 37, 39, 43, 47, 52, 54, 60, 62, 68, 72, 76, 78, 86, 89, 93, 97, 103, 105, 113, 115, 121, 125, 129, 133, 142, 144, 148, 152, 160, 162, 170, 172, 178, 184, 188, 190, 200, 203, 209, 213, 219, 221, 229, 233, 241, 245
Offset: 0

Views

Author

Peter Luschny, Dec 14 2021

Keywords

Comments

We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S).

Examples

			a(0) = 1 = card({}).
a(4) = 7 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 2, 3}).
a(6) = 12 = card({}, {0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 1, 2}, {0, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5}).
		

Crossrefs

Programs

  • Maple
    A350102 := n -> ifelse(n = 0, 1, 2 + add(iquo(n-1, k), k = 1 .. n-1)):
    seq(A350102(n), n = 0 .. 58);
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + DivisorSigma[0, n - 1];
    Table[a[n], {n, 0, 58}]

Formula

a(n) = a(n - 1) + tau(n - 1) for n >= 2, tau = A000005.
a(n) = 2 + Sum_{k=1..n-1} floor((n - 1)/k) for n >= 1.
a(n) = 2 + A006218(n - 1) for n >= 1.
a(n) = 1 + A054519(n - 1) for n >= 1.
Row sums of A350103.
a(n) >= n + floor(n/2) + floor(n/3).

A350105 Number of subsets of the initial segment of the natural numbers strictly below n which are not self-measuring. Number of subsets S of [n] with S != distset(S).

Original entry on oeis.org

0, 0, 1, 3, 9, 22, 52, 112, 238, 490, 999, 2019, 4065, 8155, 16345, 32725, 65489, 131020, 262090, 524228, 1048514, 2097084, 4194232, 8388532, 16777138, 33554346, 67108775, 134217635, 268435359, 536870809, 1073741719, 2147483535, 4294967181, 8589934471, 17179869059
Offset: 0

Views

Author

Peter Luschny, Dec 16 2021

Keywords

Comments

We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S).

Crossrefs

Programs

  • SageMath
    def A350105List(len):
        L = [0] * len
        b, z = 2, 2
        for n in (2..len-1):
            b += sloane.A000005(n - 1)
            z += z
            L[n] = z - b
        return L
    print(A350105List(35))

Formula

See the formulas in A350102.
a(n) = 2^n - A350102(n).

A349975 Expansion of g.f. (x^4*(x^2 + 2*x + 3))/((x - 1)^4*(x + 1)*(x^2 + x + 1)).

Original entry on oeis.org

0, 0, 0, 0, 3, 8, 17, 31, 51, 77, 112, 155, 208, 272, 348, 436, 539, 656, 789, 939, 1107, 1293, 1500, 1727, 1976, 2248, 2544, 2864, 3211, 3584, 3985, 4415, 4875, 5365, 5888, 6443, 7032, 7656, 8316, 9012, 9747, 10520, 11333, 12187, 13083, 14021, 15004, 16031, 17104
Offset: 0

Views

Author

Peter Luschny, Dec 10 2021

Keywords

Comments

Number of subsets of [n] having a distset (set of distances, see definition in A349976) of cardinality 4.

Crossrefs

Column k=4 of A349976.

A350104 a(n) = Sum_{k=0..n} A350102(k).

Original entry on oeis.org

1, 3, 6, 11, 18, 28, 40, 56, 74, 96, 121, 150, 181, 218, 257, 300, 347, 399, 453, 513, 575, 643, 715, 791, 869, 955, 1044, 1137, 1234, 1337, 1442, 1555, 1670, 1791, 1916, 2045, 2178, 2320, 2464, 2612, 2764, 2924, 3086, 3256, 3428, 3606, 3790, 3978, 4168, 4368
Offset: 0

Views

Author

Peter Luschny, Dec 16 2021

Keywords

Crossrefs

Programs

  • SageMath
    def A350104List(len):
        L = [1] * len
        a, b = 1, 2
        for n in (2..len):
            a += b
            b += sloane.A000005(n - 1)
            L[n - 1] = a
        return L
    print(A350104List(50))

A350324 Missing even distances in full prime rulers, i.e., even numbers k, 0 < k < p-3 for some prime p, such that k is not the difference of two primes less than or equal to p.

Original entry on oeis.org

88, 112, 118, 140, 182, 202, 214, 242, 284, 292, 298, 316, 322, 338, 358, 388, 400, 410, 422, 448, 470, 478, 490, 512, 526, 532, 548, 578, 622, 632, 664, 682, 692, 700, 710, 718, 742, 760, 772, 778, 788, 800, 812, 830, 838, 844, 862, 868, 886, 892, 898, 910, 920, 928, 952, 958, 982, 1000, 1022, 1040, 1052, 1072, 1078, 1108, 1130, 1136, 1142, 1154, 1162, 1172, 1192, 1204
Offset: 1

Views

Author

Rainer Rosenthal, Dec 24 2021

Keywords

Comments

Inspired by the notion of 'distset' as in A349976, and the general idea of sets of natural numbers as marks of a 'ruler'.

Examples

			a(1) = 88 < p - 3 for prime number p = 97, and there are no primes p1, p2 <= p with 88 = p1 - p2.
		

Crossrefs

Programs

  • Maple
    primedist := n -> {seq(2*j, j = 0..(ithprime(n) - 3)/2)} minus `union`(seq({seq(abs(ithprime(j) - ithprime(k)), k = 1..j)}, j = 1..n)):
    `union`(seq(primedist(j), j = 1..200)); # Peter Luschny, Dec 24 2021
  • PARI
    genit(maxx=1300)={arr=List();forstep(x=2,maxx,2,q=nextprime(x+2);if(!isprime(q-x),listput(arr,x)));arr;} \\ Bill McEachen, Feb 09 2022
Showing 1-10 of 10 results.