cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016121 Number of sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.

Original entry on oeis.org

1, 2, 5, 17, 86, 698, 9551, 226592, 9471845, 705154187, 94285792211, 22807963405043, 10047909839840456, 8110620438438750647, 12062839548612627177590, 33226539134943667506533207, 170288915434579567358828997806, 1630770670148598007261992936663653
Offset: 0

Views

Author

Keywords

Comments

Number of n X n binary symmetric matrices with rows, considered as binary numbers, in nondecreasing order. - R. H. Hardin, May 30 2008
Also, number of (n+1) X (n+1) binary symmetric matrices with zero main diagonal and rows, considered as binary numbers, in nondecreasing order. - Max Alekseyev, Feb 06 2022

Crossrefs

Row sums of triangle A097712.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k > n, 0, If[n == k, 1, If[k == 0, 1, T[n - 1, k] + Sum[T[n - 1, j] T[j, k - 1], {j, 0, n - 1}]]]];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 02 2019 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A097712
        if k<0 or k>n: return 0
        elif k==0 or k==n: return 1
        else: return T(n-1, k) + sum(T(n-1, j)*T(j, k-1) for j in range(n))
    def A016121(n): return sum(T(n,k) for k in range(n+1))
    [A016121(n) for n in range(31)] # G. C. Greubel, Feb 21 2024

Formula

a(n) = Sum_{k=0..n} A097712(n, k). - Paul D. Hanna, Aug 24 2004
Equals the binomial transform of A008934 (number of tournament sequences): a(n) = Sum_{k=0..n} C(n, k)*A008934(k). - Paul D. Hanna, Sep 18 2005

A351287 Number of symmetric 0-1 matrices with zero main diagonal and nondecreasing number of ones in the rows.

Original entry on oeis.org

1, 2, 4, 16, 84, 936, 16758, 602544, 37693734, 4588585904, 1016082688298, 436137488655846, 348748058993750616, 538461898813943437676
Offset: 1

Views

Author

Max Alekseyev, Feb 06 2022

Keywords

Comments

Also, number of graphs with vertices labeled 1, 2, ..., n such that their degrees are nondecreasing.

Crossrefs

Programs

  • PARI
    \\ See link in A295193 for GraphsByDegreeSeq.
    a(n)={my(M=GraphsByDegreeSeq(n,n,(p,r)->1)); sum(i=1, matsize(M)[1], my(u=Vec(M[i,1])); prod(j=1, #u, u[j]!)*M[i,2]/n!)} \\ Andrew Howroyd, Feb 06 2022
  • Sage
    def a351287(n): return sum(prod(factorial(e) for e in Partition((d+1 for d in G.degree_sequence())).to_exp()) // G.automorphism_group(return_group=False, order=True) for G in graphs(n))
    

Extensions

a(11)-a(14) from Andrew Howroyd, Feb 06 2022

A351158 Number of n X n symmetric 0-1 matrices where rows are sorted lexicographically and row sums are nondecreasing.

Original entry on oeis.org

2, 5, 15, 56, 275, 1897, 18948
Offset: 1

Views

Author

Max Alekseyev, Feb 02 2022

Keywords

Crossrefs

Showing 1-3 of 3 results.