cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065043 Characteristic function of the numbers with an even number of prime factors (counted with multiplicity): a(n) = 1 if n = A028260(k) for some k then 1 else 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 05 2001

Keywords

Crossrefs

Characteristic function of A028260 (positions of 1's). Cf. also A026424 (positions of 0's) and A320655.
One less than A007421.
Cf. also A066829, A353374.

Programs

  • Maple
    A065043 := proc(n)
        if type(numtheory[bigomega](n),'even') then
            1;
        else
            0;
        end if;
    end proc: # R. J. Mathar, Jun 26 2013
  • Mathematica
    Table[(LiouvilleLambda[n]+1)/2,{n,1,20}] (* Enrique Pérez Herrero, Jul 07 2012 *)
  • PARI
    { for (n=1, 1000, a=1 - bigomega(n)%2; write("b065043.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 04 2009
    
  • PARI
    A065043(n) = (1 - (bigomega(n)%2)); \\ Antti Karttunen, Apr 19 2022
    
  • Python
    from operator import ixor
    from functools import reduce
    from sympy import factorint
    def A065043(n): return (reduce(ixor, factorint(n).values(),0)&1)^1 # Chai Wah Wu, Jan 01 2023

Formula

a(n) = 1 - A001222(n) mod 2.
a(n) = A007421(n) - 1.
a(n) = 1 - A066829(n).
a(A028260(k)) = 1 and a(A026424(k)) = 0 for all k.
Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/(2*zeta(s)). - Enrique Pérez Herrero, Jul 06 2012
a(n) = (A008836(n) + 1)/2. - Enrique Pérez Herrero, Jul 07 2012
a(n) = A001222(2n) mod 2. - Wesley Ivan Hurt, Jun 22 2013
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = Sum_{n>=1} x^(n^2)/(1 - x^n). - Ilya Gutkovskiy, Apr 25 2017
From Antti Karttunen, Dec 01 2022: (Start)
For x, y >= 1, a(x*y) = 1 - abs(a(x)-a(y)).
a(n) = a(A046523(n)) = A356163(A003961(n)).
a(n) = A000035(A356163(n)+A347102(n)).
a(n) = A010052(n) + A353669(n).
a(n) = A353555(n) + A353557(n).
a(n) = A358750(n) + A358752(n).
a(n) = A353374(n) + A358775(n).
a(n) >= A356170(n).
(End)

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A353377 Number of ways to write n as a product of the terms of A345452 larger than 1; a(1) = 1 by convention (an empty product).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Number of factorizations of n into factors k > 1 for which there is an even number of primes (when counted with multiplicity, A001222) in their prime factorization, and the 2-adic valuation of k (A007814) is also even.

Examples

			Of the 19 divisors of 240 larger than 1, the following: [4, 15, 16, 60, 240] are found in A345452. Using them, we can factor 240 in four possible ways, as 240 = 60*4 = 16*15 = 15*4*4, therefore a(240) = 4.
Of the 23 divisors of 540 larger than 1, the following: [4, 9, 15, 36, 60, 135, 540] are found in A345452. Using them, we can factor 540 in five possible ways, as 540 = 135*4 = 60*9 = 36*15 = 15*9*4, therefore a(540) = 5.
		

Crossrefs

Programs

  • PARI
    A353374(n) = (!(bigomega(n)%2) && !(valuation(n, 2)%2));
    A353377(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&A353374(d), s += A353377(n/d, d))); (s));

Formula

For all n >= 1, a(n) <= A353337(n).

A353338 Number of ways to write the square of n as a product of the terms of A028260 larger than 1; a(1) = 1 by convention (an empty product).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 3, 5, 1, 6, 1, 6, 3, 3, 1, 12, 2, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 16, 1, 3, 3, 12, 1, 12, 1, 6, 6, 3, 1, 21, 2, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 33, 1, 3, 6, 11, 3, 12, 1, 6, 3, 12, 1, 33, 1, 3, 6, 6, 3, 12, 1, 21, 5, 3, 1, 33, 3, 3, 3, 12, 1, 33, 3, 6, 3, 3, 3, 36, 1, 6, 6
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Number of factorizations of n^2 into factors k > 1 for which there is an even number of primes (when counted with multiplicity, A001222) in their prime factorization.

Crossrefs

Programs

Formula

a(n) = A353337(A000290(n)).
a(n) = a(A046523(n)). [The sequence depends only on the prime signature of n].
For all n >= 1, a(n) >= A353378(n).

A357374 Number of ordered factorizations of n into numbers > 1 with an even number of prime divisors (prime factors counted with multiplicity).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 0, 4, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 5, 1, 1, 1, 3, 0, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A065043[n_] := Boole[EvenQ[PrimeOmega[n]]]; a[1] = 1; a[n_] := a[n] = Sum[If[d < n, A065043[n/d] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d < n} A065043(n/d) * a(d).
Showing 1-4 of 4 results.