cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A279061 Number of divisors of n of the form 7*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möebius transform is a period-7 sequence {1, 0, 0, 0, 0, 0, 0, ...}.

Examples

			a(8) = 2 because 8 has 4 divisors {1,2,4,8} among which 2 divisors {1,8} are of the form 7*k + 1.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0)..a(N)
    V:= Vector(N):
    for k from 1 to N do
      R:= [seq(i,i=k..N,7*k)];
      V[R]:= map(`+`,V[R],1);
    od:
    0,seq(V[i],i=1..N); # Robert Israel, Dec 05 2016
  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(7 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(7 k + 1)/(1 - x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(IntegerQ[(#-1)/7]&)],{n,0,100}] (* _Harvey P. Dale, Nov 08 2022 *)
  • PARI
    concat([0], Vec(sum(k=1, 100, x^k / (1 - x^(7*k))) + O(x^101))) \\ Indranil Ghosh, Mar 29 2017

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(7*k)).
G.f.: Sum_{k>=0} x^(7*k+1)/(1 - x^(7*k+1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,7) - (1 - gamma)/7 = 0.713612..., gamma(1,7) = -(psi(1/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A354628 Decimal expansion of the negated digamma function at 2/7.

Original entry on oeis.org

3, 6, 8, 5, 5, 1, 7, 9, 8, 0, 2, 8, 5, 8, 1, 5, 3, 3, 3, 6, 2, 3, 0, 3, 1, 4, 3, 9, 1, 5, 9, 9, 3, 8, 1, 3, 6, 3, 8, 1, 7, 6, 9, 5, 8, 8, 5, 1, 5, 1, 7, 2, 6, 5, 9, 8, 4, 3, 9, 7, 1, 6, 1, 6, 2, 3, 1, 5, 1, 9, 5, 8, 6, 3, 8, 7, 8, 7, 7, 6, 6, 5, 6, 0, 9, 4, 5, 0, 3, 7, 1, 4, 3, 8, 8, 2
Offset: 1

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(2/7) = -3.6855179802858...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[2/7], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    -psi(2/7) \\ Amiram Eldar, Jun 14 2023

A354629 Decimal expansion of the negated digamma function at 3/7.

Original entry on oeis.org

2, 3, 6, 5, 8, 1, 8, 7, 5, 7, 2, 9, 4, 9, 8, 2, 5, 9, 7, 2, 1, 3, 4, 7, 3, 4, 1, 2, 2, 7, 2, 1, 1, 6, 1, 8, 5, 9, 6, 0, 5, 6, 0, 4, 6, 2, 9, 8, 9, 7, 0, 4, 2, 6, 9, 6, 0, 7, 4, 5, 2, 9, 5, 3, 3, 1, 4, 5, 2, 4, 4, 0, 3, 2, 5, 9, 7, 7, 5, 7, 3, 2, 6, 9, 3, 1, 3, 2, 9, 2, 7, 2
Offset: 1

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(3/7) = -2.36581875729498...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[3/7], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    -psi(3/7) \\ Amiram Eldar, Jun 14 2023

A354630 Decimal expansion of the negated digamma function at 4/7.

Original entry on oeis.org

1, 6, 4, 8, 7, 7, 0, 7, 3, 4, 9, 2, 1, 0, 7, 7, 4, 3, 8, 2, 6, 1, 9, 1, 2, 6, 7, 2, 9, 4, 4, 2, 8, 7, 7, 6, 7, 6, 2, 7, 7, 6, 0, 1, 3, 8, 8, 2, 8, 4, 1, 3, 2, 9, 5, 3, 0, 0, 3, 6, 5, 7, 2, 4, 4, 5, 1, 5, 4, 0, 4, 7, 4, 3, 8, 3, 2, 3, 2, 3, 3, 2, 3, 9, 2, 7, 0, 2, 3, 6, 8, 8, 3
Offset: 1

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(4/7) = -1.64877073492107...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[4/7], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    -psi(4/7) \\ Amiram Eldar, Jun 14 2023

A354631 Decimal expansion of the negated digamma function at 5/7.

Original entry on oeis.org

1, 1, 8, 0, 1, 8, 1, 4, 4, 0, 3, 3, 9, 4, 9, 8, 7, 5, 4, 8, 4, 4, 6, 7, 7, 7, 2, 0, 4, 4, 6, 1, 6, 1, 3, 2, 8, 3, 1, 9, 6, 2, 3, 2, 2, 2, 0, 2, 8, 7, 0, 3, 4, 7, 5, 8, 2, 1, 7, 0, 9, 2, 7, 4, 5, 6, 4, 4, 9, 1, 1, 9, 7, 3, 3, 6, 6, 6, 8, 2, 3, 5, 4, 9, 8, 4, 9, 0, 5, 1, 2
Offset: 1

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(5/7) = -1.180181440339...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[5/7], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    -psi(5/7) \\ Amiram Eldar, Jun 14 2023

A354632 Decimal expansion of the negated digamma function at 6/7.

Original entry on oeis.org

8, 4, 0, 3, 9, 5, 8, 7, 7, 7, 3, 0, 6, 7, 2, 9, 7, 6, 8, 8, 3, 9, 3, 1, 1, 9, 6, 7, 5, 7, 2, 8, 8, 2, 2, 7, 6, 0, 2, 9, 1, 9, 4, 7, 4, 7, 6, 0, 2, 5, 2, 0, 5, 9, 2, 9, 2, 7, 9, 6, 6, 5, 1, 0, 5, 2, 5, 1, 0, 9, 8, 1, 0, 9, 9, 5, 4, 1, 9, 6, 7, 6, 8, 8, 7, 0, 7, 4, 9, 5, 8, 9
Offset: 0

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(6/7) = -0.84039587773067...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[6/7], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    -psi(6/7) \\ Amiram Eldar, Jun 14 2023

A033572 a(n) = (2*n+1)*(7*n+1).

Original entry on oeis.org

1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Bisection of A001106.

Programs

Formula

a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024
Showing 1-7 of 7 results.