cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083917 Number of divisors of n that are congruent to 7 modulo 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,10) - (1 - gamma)/10 = -0.150534..., gamma(7,10) = -(psi(7/10) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023

A262246 Decimal expansion of Sum_{k>=0} (-1)^k/(5k+2).

Original entry on oeis.org

4, 0, 6, 9, 0, 1, 6, 3, 4, 2, 8, 9, 4, 2, 5, 3, 6, 8, 0, 7, 9, 8, 6, 0, 0, 7, 1, 7, 8, 8, 8, 4, 9, 4, 1, 6, 1, 8, 4, 7, 4, 5, 4, 0, 8, 6, 6, 7, 1, 1, 5, 4, 7, 9, 7, 6, 4, 2, 4, 4, 9, 9, 5, 8, 9, 7, 1, 2, 4, 0, 1, 7, 8, 3, 8, 2, 7, 6, 7, 1, 0, 5, 9, 3, 7, 1
Offset: 0

Views

Author

Gheorghe Coserea, Oct 06 2015

Keywords

Examples

			0.4069016342...
		

Crossrefs

Programs

  • Mathematica
    N[(1/5)*((Sqrt[5]-1)*Log[2] + Sqrt[5]*Log[Sin[3*Pi/10]] + (Pi/2)*Sec[Pi/10]), 100] (* G. C. Greubel, Oct 07 2015 *) (* fixed by Vaclav Kotesovec, Dec 11 2017 *)
  • PARI
    default(realprecision, 87);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(5*n+2)))), "3..-2"))

Formula

Sum_{n>=0} (-1)^n/(5n+2) = Integral_{x=0..1} x/(1+x^5)dx.
From G. C. Greubel, Oct 07 2015: (Start)
Sum_{n>=0} (-1)^n/(5n+2) = (1/5)*(sqrt(5)*log(phi) - log(2) + Pi*(5*phi^2)^(-1/4)), where 2*phi=1+sqrt(5).
Sum_{n>=0} (-1)^n/(5n+2) = (1/5)*(sqrt(5)*log(2*sin(3*Pi/10)) - log(2) + (Pi/2)*sec(Pi/10)).
(End)
Sum_{n>=0} (-1)^n/(5n+2) = (Psi(1/5) - Psi(7/10))/10 , see A200135 and A354643. - Robert Israel, Oct 08 2015
From Peter Bala, Feb 19 2024: (Start)
Equals (1/2)*Sum_{n >= 0} n!*(5/2)^n/(Product_{k = 0..n} 5*k + 2) = (1/2)*Sum_{n >= 0} n!*(5/2)^n/A047055(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(5*k + 2)).
Continued fraction: 1/(2 + 2^2/(5 + 7^2/(5 + 12^2/(5 + ... + (5*n + 2)^2/(5 + ... ))))).
The slowly converging series representation Sum_{n >= 0} (-1)^n/(5*n + 2) for the constant can be accelerated to give the following faster converging series
1/4 + (5/2)*Sum_{n >= 0} (-1)^n/((5*n + 2)*(5*n + 7)) and
19/56 + (5^2/2)*Sum_{n >= 0} (-1)^n/((5*n + 2)*(5*n + 7)*(5*n + 12)).
These two series are the cases r = 1 and r = 2 of the general result:
for r >= 0, the constant equals C(r) + ((5/2)^r)*r!*Sum_{n >= 0} (-1)^n/((5*n + 2)*(5*n + 7)*...*(5*n + 5*r + 2)), where C(r) is the rational number (1/2)*Sum_{k = 0..r-1} (5/2)^k*k!/(2*7*12*...*(5*k + 2)). The general result can be proved by the WZ method as described in Wilf. (End)
From Peter Bala, Mar 03 2024: (Start)
Equals (1/2)*hypergeom([2/5, 1], [7/5], -1).
Gauss's continued fraction: 1/(2 + 2^2/(7 + 5^2/(12 + 7^2/(17 + 10^2/(22 + 12^2/(27 + 15^2/(32 + 17^2/(37 + 20^2/(42 + 22^2/(47 + ... )))))))))). (End)

A354642 Decimal expansion of the negated digamma function at 3/10.

Original entry on oeis.org

3, 5, 0, 2, 5, 2, 4, 2, 2, 2, 2, 0, 0, 1, 3, 2, 9, 8, 8, 9, 6, 4, 4, 9, 4, 5, 0, 7, 3, 7, 1, 9, 8, 1, 5, 9, 9, 5, 3, 7, 9, 0, 8, 2, 8, 8, 4, 0, 4, 5, 0, 2, 0, 9, 5, 6, 6, 4, 9, 1, 9, 7, 5, 1, 2, 6, 4, 1, 6, 3, 7, 1, 9, 0, 3, 5, 9, 1, 0, 3, 5, 9, 0, 5, 2, 0, 3, 4, 9, 3, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(3/10) = -3.50252422220013...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[3/10], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    psi(3/10) \\ Michel Marcus, Jun 02 2022

A354644 Decimal expansion of the negated digamma function at 9/10.

Original entry on oeis.org

7, 5, 4, 9, 2, 6, 9, 4, 9, 9, 4, 7, 0, 5, 1, 3, 9, 1, 8, 8, 6, 3, 8, 4, 0, 2, 7, 1, 8, 2, 4, 9, 5, 5, 1, 9, 5, 9, 2, 9, 6, 0, 1, 5, 1, 6, 0, 0, 1, 4, 6, 0, 0, 9, 2, 2, 7, 0, 2, 7, 9, 3, 2, 2, 6, 4, 0, 9, 8, 6, 1, 5, 7, 8, 0, 2, 1, 6, 0, 5, 5, 8, 5, 2, 3, 1, 9, 2, 8, 0, 1, 1, 9
Offset: 0

Views

Author

R. J. Mathar, Jun 01 2022

Keywords

Examples

			psi(9/10) = -0.75492694994705...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PolyGamma[9/10], 10, 120][[1]] (* Amiram Eldar, Jun 14 2023 *)
  • PARI
    psi(9/10) \\ Michel Marcus, Jun 02 2022
Showing 1-4 of 4 results.