cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277791 Denominator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 4, 1, 14, 15, 8, 1, 9, 1, 20, 21, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 16, 33, 34, 35, 2, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 16, 7, 25, 51, 52, 1, 54, 55, 8, 57, 58, 1, 60, 1, 62, 63, 32, 65, 6, 1, 68, 69, 70, 1, 36, 1, 74, 25, 76, 77, 78, 1, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Examples

			a(4) = 2 because 4 has 3 divisors {1,2,4} therefore 2 proper divisors {1,2} and 1/1 + 1/2 = 3/2.
0, 1, 1, 3/2, 1, 11/6, 1, 7/4, 4/3, 17/10, 1, 9/4, 1, 23/14, 23/15, 15/8, 1, 19/9, 1, 41/20, 31/21, 35/22, 1, 59/24, 6/5, 41/26, 13/9, 55/28, ...
		

Crossrefs

Cf. A000203, A001065, A017665, A017666, A277790 (numerators), A281086, A355003, A355694 (Dirichlet inverse), A355815.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,k; a:=divisors(n) minus {n};
    denom(add(1/a[k],k=1..nops(a))); end: seq(P(i),i=1..80); # Paolo P. Lava, Oct 17 2018
  • Mathematica
    Table[Denominator[DivisorSigma[-1, n] - 1/n], {n, 1, 80}]
    Table[Denominator[(DivisorSigma[1, n] - 1)/n], {n, 1, 80}]
  • PARI
    a(n) = denominator((sigma(n)-1)/n); \\ Michel Marcus, Nov 01 2016
    
  • Python
    from math import gcd
    from sympy import divisor_sigma
    def A277791(n): return n//gcd(n,divisor_sigma(n)-1) # Chai Wah Wu, Jul 18 2022

Formula

a(n) = denominator(Sum_{d|n, d
a(n) = denominator((sigma_1(n)-1)/n).
a(p) = 1 when p is prime.
a(p^k) = p^(k-1).
Dirichlet g.f.: (zeta(s) - 1)*zeta(s+1) (for fraction Sum_{d|n, d

A355815 a(n) = gcd(A276086(n), A277791(n)), where A276086 is primorial base exp-function and A277791 is the denominator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 25, 1, 7, 1, 1, 1, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 1

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Sequence contains only terms of A048103.
Cf. also A327858, A355003.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A277791(n) = denominator((sigma(n)-1)/n); \\ From A277791
    A355815(n) = gcd(A276086(n), A277791(n));
    
  • Python
    from math import gcd
    from sympy import nextprime, divisor_sigma
    def A355815(n):
        m, p, c = 1, 2, n
        while c:
            c, a = divmod(c,p)
            m *= p**a
            p = nextprime(p)
        return gcd(m,n//gcd(n, divisor_sigma(n)-1)) # Chai Wah Wu, Jul 18 2022

Formula

a(n) = gcd(A276086(n), A277791(n)).
Showing 1-2 of 2 results.