cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A355815 a(n) = gcd(A276086(n), A277791(n)), where A276086 is primorial base exp-function and A277791 is the denominator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 25, 1, 7, 1, 1, 1, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Sequence contains only terms of A048103.
Cf. also A327858, A355003.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A277791(n) = denominator((sigma(n)-1)/n); \\ From A277791
    A355815(n) = gcd(A276086(n), A277791(n));
    
  • Python
    from math import gcd
    from sympy import nextprime, divisor_sigma
    def A355815(n):
        m, p, c = 1, 2, n
        while c:
            c, a = divmod(c,p)
            m *= p**a
            p = nextprime(p)
        return gcd(m,n//gcd(n, divisor_sigma(n)-1)) # Chai Wah Wu, Jul 18 2022

Formula

a(n) = gcd(A276086(n), A277791(n)).

A355003 a(n) = gcd(A003415(n), A277791(n)), where A003415 is the arithmetic derivative and A277791 is the denominator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 8, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 32, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16, 1, 7, 3, 5, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Cf. also A355815.

Programs

Formula

a(n) = gcd(A003415(n), A277791(n)).
a(p^k) = p^(k-1) for all primes p and exponents k > 0.

A355694 Dirichlet inverse of A277791, denominator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

1, -1, -1, -1, -1, -4, -1, -1, -2, -8, -1, 9, -1, -12, -13, -1, -1, 6, -1, 1, -19, -20, -1, -10, -4, -24, -4, 1, -1, 26, -1, -1, -31, -32, -33, 27, -1, -36, -37, 10, -1, 34, -1, 1, -12, -44, -1, 35, -6, 2, -49, 1, -1, -14, -53, 62, -55, -56, -1, 87, -1, -60, -18, -1, -63, 110, -1, 1, -67, 42, -1, -57, -1, -72, 12
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Cf. A277791.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA277791(n/d) * a(d).

A277790 Numerator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 11, 1, 7, 4, 17, 1, 9, 1, 23, 23, 15, 1, 19, 1, 41, 31, 35, 1, 59, 6, 41, 13, 55, 1, 71, 1, 31, 47, 53, 47, 5, 1, 59, 55, 89, 1, 95, 1, 83, 77, 71, 1, 41, 8, 46, 71, 97, 1, 119, 71, 17, 79, 89, 1, 167, 1, 95, 103, 63, 83, 13, 1, 125, 95, 143, 1, 97, 1, 113, 41, 139, 95, 167, 1, 37
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Examples

			a(4) = 3 because 4 has 3 divisors {1,2,4} therefore 2 proper divisors {1,2} and 1/1 + 1/2 = 3/2.
0, 1, 1, 3/2, 1, 11/6, 1, 7/4, 4/3, 17/10, 1, 9/4, 1, 23/14, 23/15, 15/8, 1, 19/9, 1, 41/20, 31/21, 35/22, 1, 59/24, 6/5, 41/26, 13/9, 55/28, ...
		

Crossrefs

Cf. A000203, A001065, A017665, A017666, A277791 (denominators).

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,k; a:=divisors(n) minus {n};
    numer(add(1/a[k],k=1..nops(a))); end: seq(P(i),i=1..80); # Paolo P. Lava, Oct 17 2018
  • Mathematica
    Table[Numerator[DivisorSigma[-1, n] - 1/n], {n, 1, 80}]
    Table[Numerator[(DivisorSigma[1, n] - 1)/n], {n, 1, 80}]
  • PARI
    a(n) = numerator((sigma(n)-1)/n); \\ Michel Marcus, Nov 01 2016
    
  • Python
    from math import gcd
    from sympy import divisor_sigma
    def A277790(n): return (m:=divisor_sigma(n)-1)//gcd(n,m) # Chai Wah Wu, Jul 18 2022

Formula

a(n) = numerator(Sum_{d|n, d
a(n) = numerator((sigma_1(n)-1)/n).
a(p) = 1 when p is prime.
a(p^k) = (p^k - 1)/(p - 1) when p is prime.
Dirichlet g.f.: (zeta(s) - 1)*zeta(s+1) (for fraction Sum_{d|n, d

A281086 Denominator of sum of reciprocals of numbers less than n that do not divide n.

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 20, 70, 840, 504, 2520, 27720, 27720, 51480, 360360, 180180, 720720, 1361360, 4084080, 77597520, 15519504, 470288, 5173168, 356948592, 1784742960, 686439600, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800, 36100888223400
Offset: 1

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Examples

			a(6) = 20 because 6 has 4 divisors {1,2,3,6} therefore 2 non-divisors {4,5} and 1/4 + 1/5 = 9/20.
0, 0, 1/2, 1/3, 13/12, 9/20, 29/20, 59/70, 1163/840, 569/504, 4861/2520, 21341/27720, 58301/27720, 79139/51480, 619181/360360, 260041/180180, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[HarmonicNumber[n] - DivisorSigma[-1, n]], {n, 1, 32}]
    Table[Denominator[HarmonicNumber[n] - DivisorSigma[1, n]/n], {n, 1, 32}]
    Table[Denominator[Total[1/Complement[Range[n],Divisors[n]]]],{n,40}] (* Harvey P. Dale, Jan 04 2020 *)

Formula

a(n) = denominator(H_n - Sum_{d|n} 1/d), where H_n is the n-th harmonic number.
a(n) = denominator(A001008(n)/A002805(n) - A000203(n)/n).
Denominators of coefficients in expansion of -log(1 - x)/(1 - x) - Sum_{k>=1} log(1/(1 - x^k)).

A372836 a(n) is the numerator of Sum_{d|n, 1 < d < n} 1/d.

Original entry on oeis.org

0, 0, 0, 1, 0, 5, 0, 3, 1, 7, 0, 5, 0, 9, 8, 7, 0, 10, 0, 21, 10, 13, 0, 35, 1, 15, 4, 27, 0, 41, 0, 15, 14, 19, 12, 3, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 25, 1, 21, 20, 45, 0, 65, 16, 9, 22, 31, 0, 107, 0, 33, 40, 31, 18, 7, 0, 57, 26, 73, 0, 61, 0, 39, 16, 63, 18, 89, 0, 21
Offset: 1

Author

Ilya Gutkovskiy, May 14 2024

Keywords

Examples

			0, 0, 0, 1/2, 0, 5/6, 0, 3/4, 1/3, 7/10, 0, 5/4, 0, 9/14, 8/15, 7/8, 0, 10/9, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[x^(2 k)/(k (1 - x^k)), {k, 2, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = numerator(sumdiv(n, d, if ((d>1) && (dMichel Marcus, May 14 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=2} x^(2*k) / (k * (1 - x^k)).
Showing 1-6 of 6 results.