cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054683 Numbers whose sum of digits is even.

Original entry on oeis.org

0, 2, 4, 6, 8, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 39, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 60, 62, 64, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 110, 112, 114, 116, 118, 121, 123, 125, 127, 129, 130
Offset: 1

Views

Author

Odimar Fabeny, Apr 19 2000

Keywords

Comments

Union of A179082 and A179084; A179081(a(n)) = 0. - Reinhard Zumkeller, Jun 28 2010
Integers with an even number of odd digits. - Bernard Schott, Nov 18 2022

Examples

			0, 2, 4, 6, 8, 11 (2), 13 (4), 15 (6), 17 (8), 19 (10), 20 (2), 22 (4) and so on.
		

Crossrefs

Subsequences: A014263, A099814, A179082, A179084.
Similar: A054684 (with an odd number of odd digits), A356929 (with an even number of even digits).

Programs

  • Mathematica
    Select[Range[0,200],EvenQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2==0 \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    a(n) = n--; m = 10*(n\5); s=sumdigits(m); m + (1-(s-1)%2) + 2*(n%5) \\ David A. Corneth, Jun 05 2016
    
  • Python
    A054683_list = [i for i in range(10**3) if not sum(int(d) for d in str(i)) % 2] # Chai Wah Wu, Mar 17 2016

Formula

a(n) = 2*n for the first 5 terms; a(n) = 2*n + 1 for the next 5 terms (recurrence).
I.e., for n > 0, a(n + 10) = a(n) + 20. - David A. Corneth, Jun 05 2016

Extensions

More terms from James Sellers, Apr 19 2000
Example corrected by David A. Corneth, Jun 05 2016

A054684 Numbers whose sum of digits is odd.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 131
Offset: 1

Views

Author

Odimar Fabeny, Apr 19 2000

Keywords

Comments

Union of A179083 and A179085; A179081(a(n)) = 1. - Reinhard Zumkeller, Jun 28 2010
Equivalently, integers with an odd number of odd digits. - Bernard Schott, Nov 06 2022

Examples

			1, 3, 5, 7, 9, 10(1), 12(3), 14(5), 16(7), 18(9), 21(3) and so on.
		

Crossrefs

Cf. A054683, A137233 (number of n-digits terms).
Cf. A356929 (even number of even digits).
A294601 (exactly one odd decimal digit) is a subsequence.

Programs

  • Maple
    [seq(`if`(convert(convert(2*n-1,base,10),`+`)::odd, 2*n-1, 2*n-2), n=1..501)];
  • Mathematica
    Select[Range[200],OddQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Nov 27 2021 *)
  • PARI
    is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2 \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    isok(m) = sumdigits(m) % 2; \\ Michel Marcus, Nov 06 2022
    
  • PARI
    a(n) = n=2*(n-1); n + !(sumdigits(n)%2); \\ Kevin Ryde, Nov 07 2022
    
  • Python
    def ok(n): return sum(map(int, str(n)))&1
    print([k for k in range(132) if ok(k)]) # Michael S. Branicky, Nov 06 2022

Formula

a(n) = n * 2 - 1 for the first 5 numbers; a(n) = n * 2 for the second 5 numbers.
From Robert Israel, Jun 27 2017: (Start)
a(n) = 2*n-2 if floor((n-1)/5) is in the sequence, 2*n-1 if not.
G.f. g(x) satisfies g(x) = (1-x)*(1+x+x^2+x^3+x^4)^2*g(x^10)/x^9 + x^2*(2+x^4+3*x^5-x^9+3*x^10)/((1-x)*(1+x^5))^2.
(End)

Extensions

More terms from James Sellers, Apr 19 2000

A137233 Number of n-digit even numbers.

Original entry on oeis.org

5, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 08 2008

Keywords

Comments

From Kival Ngaokrajang, Oct 18 2013: (Start)
a(n) is also the total number of double rows identified numbers in n digit.
For example:
n = 1: 01 23 45 67 89 = 5 double rows;
n = 2: 1011 1213 1415 1617 1819...9899 = 45 double rows;
n = 3: 100101 102103 104105...998999 = 450 double rows;
The number of double rows is also A030656. (End)
a(n) is also the number of n-digit integers with an even number of even digits (A356929); a(5) = 45000 is the answer to the question 2 of the Olympiade Mathématique Belge in 2004 (link). - Bernard Schott, Sep 06 2022
a(n) is also the number of n-digit integers with an odd number of odd digits (A054684). - Bernard Schott, Nov 07 2022

Examples

			a(2) = 45 because there are 45 2-digit even numbers.
		

Crossrefs

Programs

Formula

a(n) = 9*10^(n-1)/2 if n > 1. - R. J. Mathar, May 23 2008
From Elmo R. Oliveira, Jul 23 2025: (Start)
G.f.: 5*x*(1-x)/(1-10*x).
E.g.f.: (-9 + 10*x + 9*exp(10*x))/20.
a(n) = 10*a(n-1) for n > 2.
a(n) = A052268(n)/2 for n >= 2. (End)

Extensions

Corrected and extended by R. J. Mathar, May 23 2008
More terms from Elmo R. Oliveira, Jul 23 2025

A358270 Numbers whose sum of digits is even and that have an even number of even digits.

Original entry on oeis.org

11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 39, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 60, 62, 64, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 1001, 1003, 1005, 1007, 1009, 1010, 1012, 1014, 1016, 1018, 1021, 1023, 1025, 1027, 1029, 1030
Offset: 1

Views

Author

Bernard Schott, Nov 06 2022

Keywords

Comments

There are only terms with an even number of digits, and precisely, there exist A137233(2*k) terms with 2*k digits.
The conditions separately are A054683 for even sum of digits, and A356929 for even number of even digits, so that this sequence is their intersection.
The opposite conditions, an odd sum of digits, and an odd number of odd digits, are the same and are A054684.

Examples

			26 is a term since 2+6 = 8 (even) and 26 has two even digits.
39 is a term since 3+9 = 12 (even) and 39 has zero even digits.
1012 is a term since 1+0+1+2 = 4 (even) and 1012 has two even digits.
		

Crossrefs

Intersection of A054683 and A356929.
Cf. A001637 (even length), A179081 (digit sum mod 2).

Programs

  • Mathematica
    Select[Range[1000], EvenQ[Plus @@ IntegerDigits[#]] && EvenQ[Plus @@ DigitCount[#, 10, Range[0, 8, 2]]] &] (* Amiram Eldar, Nov 06 2022 *)
  • PARI
    a(n) = n*=2; n += 100^logint(110*n,100) \ 11; n - sumdigits(n)%2; \\ Kevin Ryde, Nov 10 2022
  • Python
    def ok(n): s = str(n); return sum(map(int, s))%2 == sum(1 for d in s if d in "02468")%2 == 0
    print([k for k in range(1031) if ok(k)]) # Michael S. Branicky, Nov 06 2022
    
  • Python
    from itertools import count, islice, chain
    def A358270_gen(): # generator of terms
        return filter(lambda n:not (len(s:=str(n))&1 or sum(int(d) for d in s)&1), chain.from_iterable((range(10**l,10**(l+1)) for l in count(1,2))))
    A358270_list = list(islice(A358270_gen(),61)) # Chai Wah Wu, Nov 11 2022
    

Formula

a(n) = t - A179081(t) where t = A001637(2*n). - Kevin Ryde, Nov 10 2022
Showing 1-4 of 4 results.