cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A363027 Sum of divisors of 5*n-4 of form 5*k+2.

Original entry on oeis.org

0, 2, 0, 2, 7, 2, 0, 14, 0, 2, 17, 9, 0, 24, 0, 2, 27, 2, 7, 46, 0, 2, 37, 2, 0, 51, 0, 19, 47, 2, 0, 66, 7, 2, 57, 24, 0, 64, 0, 9, 67, 2, 0, 113, 17, 2, 84, 2, 0, 84, 0, 34, 87, 9, 0, 106, 0, 24, 97, 39, 7, 121, 0, 2, 107, 2, 0, 175, 0, 2, 144, 2, 0, 124, 7, 49, 127, 2, 17, 168, 0, 9, 137, 86, 0, 144, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= n ->
      convert(select(t -> t mod 5 = 2, numtheory:-divisors(5*n-4)),`+`):
    map(f, [$1..100]); # Robert Israel, Jul 23 2023
  • Mathematica
    a[n_] := DivisorSum[5*n - 4, # &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
    Table[Total[Select[Divisors[5n-4],Mod[#,5]==2&]],{n,90}] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, (d%5==2)*d);

Formula

a(n) = A284280(5*n-4).
G.f.: Sum_{k>0} (5*k-3) * x^(3*k-1) / (1 - x^(5*k-3)).

A359287 Number of divisors of 5*n-1 of form 5*k+2.

Original entry on oeis.org

1, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 2, 0, 2, 2, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 2, 4, 0, 2, 0, 2, 1, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 2, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-3))))

Formula

a(n) = A001877(5*n-1).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-3)).

A359288 Number of divisors of 5*n-1 of form 5*k+3.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 3, 0, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 2, 4, 0, 0, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==3);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-2)))))

Formula

a(n) = A001878(5*n-1).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-2)).

A363053 Sum of divisors of 5*n-4 of form 5*k+3.

Original entry on oeis.org

0, 3, 0, 8, 3, 13, 0, 21, 0, 23, 3, 36, 0, 36, 0, 38, 3, 43, 13, 59, 0, 53, 3, 58, 0, 84, 0, 76, 3, 73, 0, 94, 23, 83, 3, 96, 0, 96, 0, 126, 3, 103, 0, 137, 13, 113, 36, 118, 0, 126, 0, 136, 3, 171, 0, 164, 0, 156, 3, 156, 43, 174, 0, 158, 3, 163, 0, 255, 0, 173, 16, 178, 0, 186, 53, 196, 3, 193, 23, 252
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 4, # &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, (d%5==3)*d);

Formula

a(n) = A284281(5*n-4).
G.f.: Sum_{k>0} (5*k-2) * x^(2*k) / (1 - x^(5*k-2)).

A363032 Expansion of Sum_{k>0} k * x^(3*k-1) / (1 - x^(5*k-3)).

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 4, 0, 1, 4, 3, 0, 6, 0, 1, 6, 1, 2, 11, 0, 1, 8, 1, 0, 12, 0, 5, 10, 1, 0, 15, 2, 1, 12, 6, 0, 14, 0, 3, 14, 1, 0, 25, 4, 1, 18, 1, 0, 18, 0, 8, 18, 3, 0, 23, 0, 6, 20, 9, 2, 26, 0, 1, 22, 1, 0, 38, 0, 1, 30, 1, 0, 26, 2, 11, 26, 1, 4, 36, 0, 3, 28, 19, 0, 30, 0, 1, 32, 1, 0, 47, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 4, # + 3 &, Mod[#, 5] == 2 &]/5; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, (d%5==2)*(d+3))/5;

Formula

a(n) = (1/5) * Sum_{d | 5*n-4, d==2 (mod 5)} (d+3).
G.f.: Sum_{k>0} x^(2*k) / (1 - x^(5*k-2))^2.

A363158 Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k-2)).

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 5, 0, 5, 1, 8, 0, 8, 0, 8, 1, 9, 3, 13, 0, 11, 1, 12, 0, 18, 0, 16, 1, 15, 0, 20, 5, 17, 1, 20, 0, 20, 0, 26, 1, 21, 0, 29, 3, 23, 8, 24, 0, 26, 0, 28, 1, 35, 0, 34, 0, 32, 1, 32, 9, 36, 0, 32, 1, 33, 0, 53, 0, 35, 4, 36, 0, 38, 11, 40, 1, 39, 5, 52, 0, 53, 1, 47, 0, 44, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 4, # + 2 &, Mod[#, 5] == 3 &]/5; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, (d%5==3)*(d+2))/5;

Formula

a(n) = (1/5) * Sum_{d | 5*n-4, d==3 (mod 5)} (d+2).
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(5*k-3))^2.
Showing 1-6 of 6 results.