A117640
Concatenation of first n numbers in base 4.
Original entry on oeis.org
1, 12, 123, 12310, 1231011, 123101112, 12310111213, 1231011121320, 123101112132021, 12310111213202122, 1231011121320212223, 123101112132021222330, 12310111213202122233031
Offset: 1
-
Table[FromDigits[Flatten[Table[IntegerDigits[n,4],{n,k}]]],{k,15}] (* Harvey P. Dale, Jan 18 2023 *)
-
from gmpy2 import digits
def A117640(n): return int(''.join(digits(n,4) for n in range(1,n+1))) # Chai Wah Wu, Apr 19 2023
A362118
a(n) = (10^(n*(n+1)/2)-1)/9.
Original entry on oeis.org
1, 111, 111111, 1111111111, 111111111111111, 111111111111111111111, 1111111111111111111111111111, 111111111111111111111111111111111111, 111111111111111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 111111111111111111111111111111111111111111111111111111111111111111
Offset: 1
a(3) = 111111 because 3(3+1)/2 = 6, and 111111 has 6 ones.
A360504
Concatenate the ternary strings for 1,2,...,n-1, n, n-1, ..., 2,1.
Original entry on oeis.org
1, 121, 121021, 1210111021, 12101112111021, 121011122012111021, 1210111220212012111021, 12101112202122212012111021, 1210111220212210022212012111021, 1210111220212210010110022212012111021, 1210111220212210010110210110022212012111021, 1210111220212210010110211010210110022212012111021
Offset: 1
To get a(3) we concatenate 1, 2, 10, 2, and 1, getting 121021.
This is the ternary analog of
A173426.
-
t:= n-> (l-> parse(cat(seq(l[-i], i=1..nops(l)))))(convert(n, base, 3)):
a:= n-> parse(cat(map(t, [$1..n, n-i$i=1..n-1])[])):
seq(a(n), n=1..12); # Alois P. Heinz, Feb 17 2023
-
Table[FromDigits[Flatten[Join[IntegerDigits[#,3]&/@Range[n],IntegerDigits[#,3]&/@ Range[ n-1,1,-1]]]],{n,20}] (* Harvey P. Dale, Oct 01 2023 *)
-
from sympy.ntheory import digits
def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in list(range(1, n+1))+list(range(n-1, 0, -1))))
print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 18 2023
-
# faster version for initial segment of sequence
from sympy.ntheory import digits
from itertools import count, islice
def agen(): # generator of terms
sf, sr = "", ""
for n in count(1):
sn = "".join(map(str, digits(n, 3)[1:]))
sf += sn
yield int(sf + sr)
sr = sn + sr
print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 18 2023
A360506
Read A360505(n) as if it were a base-3 string and write it in base 10.
Original entry on oeis.org
1, 7, 34, 358, 4003, 43369, 456712, 4708240, 47754961, 1339156591, 39693785002, 1169411930926, 34213667699203, 995038950807565, 28790341783585180, 829295063367580492, 23793774263808446005, 680307709052882601259, 19390954850541496025998
Offset: 1
A360505(4) = 111021 and 111021_3 = 358_10 = a(4).
-
a(n) = fromdigits(concat([digits(k, 3) | k <- Vecrev([1..n])]), 3) \\ Rémy Sigrist, Feb 18 2023
-
from sympy.ntheory import digits
def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in range(n, 0, -1)), 3)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 19 2023
-
# faster version for initial segment of sequence
from sympy.ntheory import digits
from itertools import count, islice
def agen(s=""): yield from (int(s:="".join(map(str, digits(n, 3)[1:]))+s, 3) for n in count(1))
print(list(islice(agen(), 20))) # Michael S. Branicky, Feb 19 2023
-
from itertools import count, islice
def A360506_gen(): # generator of terms
a, b, c = 3, 1, 0
for i in count(1):
if i >= a:
a *= 3
c += i*b
yield c
b *= a
A360506_list = list(islice(A360506_gen(),30)) # Chai Wah Wu, Nov 08 2023
A362117
Concatenation of first n numbers in base 5.
Original entry on oeis.org
1, 12, 123, 1234, 123410, 12341011, 1234101112, 123410111213, 12341011121314, 1234101112131420, 123410111213142021, 12341011121314202122, 1234101112131420212223, 123410111213142021222324, 12341011121314202122232430, 1234101112131420212223243031
Offset: 1
-
A362117[n_]:=FromDigits[Flatten[IntegerDigits[Range[n],5]]];Array[A362117,20] (* Paolo Xausa, Nov 27 2023 *)
-
from gmpy2 import digits
def A362117(n): return int(''.join(digits(n,5) for n in range(1,n+1))) # Chai Wah Wu, Apr 19 2023
A362119
Concatenate the base-6 strings for 1,2,...,n.
Original entry on oeis.org
1, 12, 123, 1234, 12345, 1234510, 123451011, 12345101112, 1234510111213, 123451011121314, 12345101112131415, 1234510111213141520, 123451011121314152021, 12345101112131415202122, 1234510111213141520212223, 123451011121314152021222324, 12345101112131415202122232425
Offset: 1
-
A362119[n_]:=FromDigits[Flatten[IntegerDigits[Range[n],6]]];Array[A362119,20] (* Paolo Xausa, Nov 27 2023 *)
-
from sympy.ntheory import digits
from itertools import count, islice
def agen(s="", base=6): yield from (int(s:=s+"".join(map(str, digits(n, base)[1:]))) for n in count(1))
print(list(islice(agen(), 20)))
A362429
Smallest k such that the concatenation of the numbers 123...k in base n is prime when interpreted as a decimal number, or -1 if no such prime exists.
Original entry on oeis.org
-1, 231, 7315, 3241, 6, 12891, 22, 227, 127
Offset: 1
a(5) is 6: 12341011 (concatenate 1 though 6 in base 5) is a prime when interpreted as a decimal number.
-
from gmpy2 import is_prime
from sympy.ntheory import digits
from itertools import count, islice
def c(base, s=""):
if base == 1: yield from (s:=s+"1"*n for n in count(1))
else:
yield from (s:=s+"".join(map(str, digits(n, base)[1:])) for n in count(1))
def a(n):
if n == 1: return -1
return next(k for k, t in enumerate(c(n), 1) if is_prime(int(t)))
A360505
Concatenate the ternary strings for n, n-1, n-2, ..., 2, 1.
Original entry on oeis.org
1, 21, 1021, 111021, 12111021, 2012111021, 212012111021, 22212012111021, 10022212012111021, 10110022212012111021, 10210110022212012111021, 11010210110022212012111021, 11111010210110022212012111021, 11211111010210110022212012111021, 12011211111010210110022212012111021
Offset: 1
-
a[n_] := FromDigits @ Flatten @ IntegerDigits[Range[n, 1, -1], 3]; Array[a, 15] (* Amiram Eldar, Feb 18 2023 *)
-
a(n) = strjoin(concat([digits(k, 3) | k <- Vecrev([1..n])])) \\ Rémy Sigrist, Feb 18 2023
-
from sympy.ntheory import digits
def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in range(n, 0, -1)))
print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 18 2023
-
# faster version for initial segment of sequence
from sympy.ntheory import digits
from itertools import count, islice
def agen(s=""): yield from (int(s:="".join(map(str, digits(n, 3)[1:]))+s) for n in count(1))
print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 18 2023
Showing 1-9 of 9 results.
Comments