A077773 Number of integers between n^2 and (n+1)^2 that are the sum of two squares; multiple representations are counted once.
0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 6, 9, 8, 8, 10, 10, 11, 11, 12, 11, 14, 12, 13, 15, 16, 15, 15, 17, 16, 17, 19, 18, 19, 20, 19, 20, 21, 20, 22, 22, 24, 22, 25, 23, 26, 26, 24, 29, 26, 27, 28, 27, 29, 26, 31, 32, 30, 29, 33, 33, 31, 31, 35, 34, 35, 35, 35, 36, 37, 37, 33, 42, 37, 38
Offset: 0
Keywords
Examples
a(8)=6 because 65=64+1=49+16, 68=64+4, 72=36+36, 73=64+9, 74=49+25 and 80=64+16 are between squares 64 and 81. Note that 65 is counted only once.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..10000 (terms 0..1024 from T. D. Noe and Antti Karttunen).
- Hugo Pfoertner, Table of n, a(n) for n = 0..500000
- Rainer Rosenthal, Illustrating A077773
Crossrefs
Programs
-
Mathematica
maxN=100; lst={}; For[n=1, n<=maxN, n++, sqrs={}; i=n; j=0; While[i>=j, j=1; While[i^2+j^2<(n+1)^2, If[i>=j&&i^2+j^2>n^2, AppendTo[sqrs, i^2+j^2]]; j++ ]; i--; j-- ]; AppendTo[lst, Length[Union[sqrs]]]]; lst
-
PARI
a(N)=s=0;for(n=N^2+1,(N+1)^2-1,f=0;r=sqrtint(n);forstep(i=r,1,-1,if(issquare(n-i*i),f=1;s=s+1;break)));s /* Ralf Stephan, Sep 17 2013 */
-
Python
from sympy import factorint def A077773(n): return sum(1 for m in range(n**2+1,(n+1)**2) if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items())) # Chai Wah Wu, Jun 20 2023
-
Scheme
(define (A077773 n) (add (lambda (i) (* (- 1 (A010052 i)) (A229062 i))) (A000290 n) (+ -1 (A000290 (+ 1 n))))) ;; Implements sum_{i=lowlim..uplim} intfun(i) (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i))))))) ;; Antti Karttunen, Oct 04 2016
Formula
a(n) = Sum_{i=n^2+1..(n+1)^2-1} A229062(i). - Ralf Stephan, Sep 17 2013
From Antti Karttunen, Oct 04 2016: (Start)
Extensions
Term a(0)=0 prepended by Antti Karttunen, Oct 04 2016
Comments