cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2023

Keywords

Examples

			The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7).
The a(1) = 1 through a(4) = 14 subsets:
  {1}  {1}    {1}      {1}
       {2}    {3}      {2}
       {1,2}  {1,2}    {4}
              {1,3}    {1,2}
              {2,3}    {1,3}
              {1,2,3}  {1,4}
                       {2,3}
                       {2,4}
                       {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A088314.
The case of subsets containing n is A131577.
The binary version is A365314, positive A365315.
The binary complement is A365320, positive A365321.
The positive complement is counted by A365322.
A version for partitions is A365379, strict A365311.
The complement is counted by A365380.
The case of subsets without n is A365542.
A326083 and A124506 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
  • PARI
    a(n)={
      my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b);
      my(recurse(k,b)=
        if(bittest(b,0), 2^(n+1-k),
        if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)),
        self()(k+1, b) + self()(k+1, comb(k,b)) )));
      recurse(1, 1<Andrew Howroyd, Sep 04 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A365380 Number of subsets of {1..n} that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 16, 12, 32, 32, 104, 48, 256, 208, 448, 448, 1568, 896, 3840, 2368, 6912, 7680, 22912, 10752, 50688, 44800, 104448, 88064, 324096, 165888, 780288, 541696, 1458176, 1519616, 4044800, 2220032, 10838016, 8744960, 20250624, 16433152, 62267392, 34865152
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The set {4,5,6} cannot be linearly combined to obtain 7 so is counted under a(7), but we have 8 = 2*4 + 0*5 + 0*6, so it is not counted under a(8).
The a(1) = 1 through a(8) = 12 subsets:
  {}  {}  {}   {}   {}     {}     {}       {}
          {2}  {3}  {2}    {4}    {2}      {3}
                    {3}    {5}    {3}      {5}
                    {4}    {4,5}  {4}      {6}
                    {2,4}         {5}      {7}
                    {3,4}         {6}      {3,6}
                                  {2,4}    {3,7}
                                  {2,6}    {5,6}
                                  {3,5}    {5,7}
                                  {3,6}    {6,7}
                                  {4,5}    {3,6,7}
                                  {4,6}    {5,6,7}
                                  {5,6}
                                  {2,4,6}
                                  {3,5,6}
                                  {4,5,6}
		

Crossrefs

The complement is counted by A365073, without n A365542.
The binary complement is A365314, positive A365315.
The binary case is A365320, positive A365321.
For positive coefficients we have A365322, complement A088314.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A288728 counts binary sum-free subsets, first differences of A007865.
A365046 counts combination-full subsets, first differences of A364914.
A365071 counts sum-free subsets, first differences of A151897.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]=={}&]],{n,5}]

Formula

a(n) = 2^n - A365073(n).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A365322 Number of subsets of {1..n} that cannot be linearly combined using positive coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 5, 11, 26, 54, 116, 238, 490, 994, 2011, 4045, 8131, 16305, 32672, 65412, 130924, 261958, 524066, 1048301, 2096826, 4193904, 8388135, 16776641, 33553759, 67108053, 134216782, 268434324, 536869595, 1073740266, 2147481835, 4294965158, 8589932129
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The set {1,3} has 4 = 1 + 3 so is not counted under a(4). However, 3 cannot be written as a linear combination of {1,3} using all positive coefficients, so it is counted under a(3).
The a(1) = 1 through a(4) = 11 subsets:
  {}  {}     {}       {}
      {1,2}  {2}      {3}
             {1,3}    {1,4}
             {2,3}    {2,3}
             {1,2,3}  {2,4}
                      {3,4}
                      {1,2,3}
                      {1,2,4}
                      {1,3,4}
                      {2,3,4}
                      {1,2,3,4}
		

Crossrefs

The complement is counted by A088314.
The version for strict partitions is A088528.
The nonnegative complement is counted by A365073, without n A365542.
The binary complement is A365315, nonnegative A365314.
The binary version is A365321, nonnegative A365320.
For nonnegative coefficients we have A365380.
A085489 and A364755 count subsets without the sum of two distinct elements.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A364350 counts combination-free strict partitions, non-strict A364915.
A365046 counts combination-full subsets, first differences of A364914.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[], i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> 2^n-nops(b(n$2)):
    seq(a(n), n=0..33);  # Alois P. Heinz, Sep 04 2023
  • Mathematica
    cpu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],cpu[n,#]=={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365322(n): return (1<Chai Wah Wu, Sep 14 2023

Formula

a(n) = 2^n - A088314(n).
a(n) = A070880(n) + 2^(n-1) for n>=1.

Extensions

More terms from Alois P. Heinz, Sep 04 2023

A365323 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using all positive coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 9, 7, 15, 16, 29, 23, 47, 43, 74, 65, 114, 100, 174, 153, 257, 228, 368, 312, 530, 454, 736, 645, 1025, 902, 1402, 1184, 1909, 1626, 2618, 2184, 3412, 2895, 4551, 3887, 5966, 5055, 7796, 6509, 10244, 8462, 13060, 10881, 16834, 14021, 21471
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2023

Keywords

Examples

			The partition y = (3,3,2) has distinct parts {2,3}, and we have 9 = 3*2 + 1*3, so y is not counted under a(9).
The a(3) = 1 through a(10) = 16 partitions:
  (2)  (3)  (2)    (4)    (2)      (3)    (2)        (3)
            (3)    (5)    (3)      (5)    (4)        (4)
            (4)    (3,2)  (4)      (6)    (5)        (6)
            (2,2)         (5)      (7)    (6)        (7)
                          (6)      (3,3)  (7)        (8)
                          (2,2)    (4,3)  (8)        (9)
                          (3,3)    (5,2)  (2,2)      (3,3)
                          (4,2)           (4,2)      (4,4)
                          (2,2,2)         (4,3)      (5,2)
                                          (4,4)      (5,3)
                                          (5,3)      (5,4)
                                          (6,2)      (6,3)
                                          (2,2,2)    (7,2)
                                          (4,2,2)    (3,3,3)
                                          (2,2,2,2)  (4,3,2)
                                                     (5,2,2)
		

Crossrefs

Complement for subsets: A088314 or A365042, nonnegative A365073 or A365542.
For strict partitions we have A088528, nonnegative coefficients A365312.
For length-2 subsets we have A365321 (we use n instead of n-1).
For subsets we have A365322 or A365045, nonnegative coefficients A365380.
For nonnegative coefficients we have A365378, complement A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combp[n,Union[#]]=={}&]],{n,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365323(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for k in range(1,n) for d in partitions(k) if tuple(sorted(set(d))) not in a) # Chai Wah Wu, Sep 12 2023

Extensions

a(21)-a(51) from Chai Wah Wu, Sep 12 2023
Showing 1-4 of 4 results.