cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A346982 Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).

Original entry on oeis.org

1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Comments

Stirling transform of A007559.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
    b:= proc(n, m) option remember;
         `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 09 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A007559(k).
a(n) ~ n! / (Gamma(1/3) * 2^(2/3) * n^(2/3) * log(4/3)^(n + 1/3)). - Vaclav Kotesovec, Aug 14 2021
From Peter Bala, Aug 22 2023: (Start)
O.g.f. (conjectural): 1/(1 - x/(1 - 4*x/(1 - 4*x/(1 - 8*x/(1 - 7*x/(1 - 12*x/(1 - ... - (3*n-2)*x/(1 - 4*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction).
More generally, it appears that the o.g.f. of the sequence whose e.g.f. is equal to 1/(r+1 - r*exp(s*x))^(m/s) corresponds to the S-fraction 1/(1 - r*m*x/(1 - s*(r+1)*x/(1 - r*(m+s)*x/(1 - 2*s(r+1)*x/(1 - r*(m+2*s)*x/(1 - 3*s(r+1)*x/( 1 - ... ))))))). This is the case r = 3, s = 1, m = 1/3. (End)
a(0) = 1; a(n) = Sum_{k=1..n} (3 - 2*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = a(n-1) - 4*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A375949 Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(4/3).

Original entry on oeis.org

1, 4, 32, 368, 5520, 102064, 2242832, 57095728, 1652211600, 53559908784, 1922581295632, 75700072208688, 3243905700776080, 150289130386531504, 7485459789379535632, 398857142195958963248, 22639650637589839298960, 1363772478150606703714224
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=17; CoefficientList[Series[1 / (4 - 3 * Exp[x])^(4/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
  • PARI
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} A007559(k+1) * Stirling2(n,k).
a(n) ~ 3 * sqrt(Pi) * n^(n + 5/6) / (2^(13/6) * Gamma(1/3) * log(4/3)^(n + 4/3) * exp(n)). - Vaclav Kotesovec, Sep 06 2024

A375952 Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(5/3).

Original entry on oeis.org

1, 5, 45, 565, 9085, 177925, 4106445, 109105365, 3279219485, 109983317925, 4071784884845, 164919693538165, 7253726995805885, 344284133391481925, 17538600019076063245, 954467594134586386965, 55263075631036363208285, 3391909484128563111709925
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=17; CoefficientList[Series[1 / (4 - 3 * Exp[x])^(5/3),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
  • PARI
    a008544(n) = prod(k=0, n-1, 3*k+2);
    a(n) = sum(k=0, n, a008544(k+1)*stirling(n, k, 2))/2;

Formula

a(n) = (1/2) * Sum_{k=0..n} A008544(k+1) * Stirling2(n,k).

A375992 Expansion of e.g.f. (4 - 3 * exp(x))^(4/3).

Original entry on oeis.org

1, -4, 0, 16, 112, 976, 11760, 184656, 3566192, 81556176, 2152839920, 64389871696, 2151410517872, 79406805184976, 3208188040810480, 140812644820877136, 6671575179144279152, 339348322285418119376, 18443287953728909235440, 1066619199816333440144976
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-4)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j-4)) * Stirling2(n,k).

A375993 Expansion of e.g.f. (4 - 3 * exp(x))^(5/3).

Original entry on oeis.org

1, -5, 5, 35, 165, 1075, 10805, 152035, 2719365, 58547475, 1469512405, 42082036035, 1353220758565, 48264167285875, 1890433757030005, 80656857839376035, 3723074712045197765, 184851684577600696275, 9822823990059902723605, 556226222504163445932035
Offset: 0

Views

Author

Seiichi Manyama, Sep 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 3*j-5)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j-5)) * Stirling2(n,k).
a(n) ~ 5 * sqrt(Pi) * 2^(29/6) * n^(n - 13/6) / (9 * Gamma(1/3) * exp(n) * log(4/3)^(n - 5/3)). - Vaclav Kotesovec, Sep 06 2024

A367371 Expansion of the e.g.f. (exp(x) / (3 - 2*exp(x)))^(2/3).

Original entry on oeis.org

1, 2, 8, 52, 468, 5372, 74948, 1230812, 23251908, 496661532, 11834467588, 311195370972, 8950935130948, 279540192840092, 9419760953149828, 340658973061341532, 13160048773006619588, 540850933969855649052, 23561995002376443953668
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 3*j+2)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (3*j+2)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 3) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
a(n) ~ n! / (2^(2/3) * Gamma(2/3) * n^(1/3) * log(3/2)^(n + 2/3)). - Vaclav Kotesovec, Jun 09 2025
Showing 1-6 of 6 results.