cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094418 Generalized ordered Bell numbers Bo(5,n).

Original entry on oeis.org

1, 5, 55, 905, 19855, 544505, 17919055, 687978905, 30187495855, 1490155456505, 81732269223055, 4931150091426905, 324557348772511855, 23141780973332248505, 1776997406800302687055, 146197529083891406394905, 12829862285488250150167855, 1196280147496701351115120505
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Fifth row of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    A094418:= func< k | A094416(5,k) >;
    [A094418(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    t = 30; Range[0, t]! CoefficientList[Series[1/(6 - 5 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(6 - 5*exp(x)))) \\ Joerg Arndt, Jan 15 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    def A094418(k): return A094416(5,k)
    [A094418(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(6 - 5*exp(x)).
a(n) = Sum_{k=0..n} A131689(n,k) * 5^k. - Philippe Deléham, Nov 03 2008
a(n) ~ n! / (6*(log(6/5))^(n+1)). - Vaclav Kotesovec, Mar 14 2014
a(0) = 1; a(n) = 5 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 5 * a(n-1) - 6 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
From Seiichi Manyama, Jun 01 2025: (Start)
a(n) = (-1)^(n+1)/6 * Li_{-n}(6/5), where Li_{n}(x) is the polylogarithm function.
a(n) = (1/6) * Sum_{k>=0} k^n * (5/6)^k.
a(n) = (5/6) * Sum_{k=0..n} 6^k * (-1)^(n-k) * A131689(n,k) for n > 0. (End)

A365568 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(2/5).

Original entry on oeis.org

1, 2, 16, 212, 3964, 95804, 2840140, 99760124, 4050900268, 186700658972, 9628444876108, 549349531209404, 34355463031007596, 2336935606239856988, 171779270567736231052, 13568895740353218626300, 1146225546710339427328684, 103113032296428007394503580
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 11 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+2)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 3*k/n) * binomial(n,k) * a(n-k).
a(n) ~ sqrt(Pi) * 2^(1/10) * n^(n - 1/10) / (3^(2/5) * Gamma(2/5) * exp(n) * log(6/5)^(n + 2/5)). - Vaclav Kotesovec, Nov 11 2023
a(0) = 1; a(n) = 2*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A365570 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(4/5).

Original entry on oeis.org

1, 4, 40, 616, 12856, 338728, 10781176, 402250216, 17213590840, 831013114792, 44675458306168, 2646758624166760, 171319908334752184, 12028779733435667752, 910538645035885918456, 73918475291961325824232, 6406179168820339231897144
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 11 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (5 - k/n) * binomial(n,k) * a(n-k).
a(n) ~ sqrt(2*Pi) * n^(n + 3/10) / (6^(4/5) * Gamma(4/5) * exp(n) * log(6/5)^(n + 4/5)). - Vaclav Kotesovec, Nov 11 2023
a(0) = 1; a(n) = 4*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A365586 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5).

Original entry on oeis.org

1, 3, 27, 390, 7770, 197520, 6108720, 222585360, 9337369920, 443180705520, 23478556469040, 1373311758143520, 87902002849402080, 6111187336982764800, 458573390187299798400, 36939974397639066086400, 3179423992959428231894400, 291190738388834303603395200
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k).

A367375 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(3/5).

Original entry on oeis.org

1, 3, 21, 243, 3909, 80451, 2016885, 59610771, 2029183653, 78173046243, 3362038875093, 159665003673651, 8298290454862341, 468484406336978307, 28548397948780827957, 1867633303272817927635, 130551162799758211802469, 9710901131124428156535075
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 5*j+3)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (2*k/n - 5) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
Showing 1-5 of 5 results.