cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094418 Generalized ordered Bell numbers Bo(5,n).

Original entry on oeis.org

1, 5, 55, 905, 19855, 544505, 17919055, 687978905, 30187495855, 1490155456505, 81732269223055, 4931150091426905, 324557348772511855, 23141780973332248505, 1776997406800302687055, 146197529083891406394905, 12829862285488250150167855, 1196280147496701351115120505
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Fifth row of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    A094418:= func< k | A094416(5,k) >;
    [A094418(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    t = 30; Range[0, t]! CoefficientList[Series[1/(6 - 5 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
  • PARI
    my(N=25,x='x+O('x^N)); Vec(serlaplace(1/(6 - 5*exp(x)))) \\ Joerg Arndt, Jan 15 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    def A094418(k): return A094416(5,k)
    [A094418(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(6 - 5*exp(x)).
a(n) = Sum_{k=0..n} A131689(n,k) * 5^k. - Philippe Deléham, Nov 03 2008
a(n) ~ n! / (6*(log(6/5))^(n+1)). - Vaclav Kotesovec, Mar 14 2014
a(0) = 1; a(n) = 5 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 5 * a(n-1) - 6 * Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
From Seiichi Manyama, Jun 01 2025: (Start)
a(n) = (-1)^(n+1)/6 * Li_{-n}(6/5), where Li_{n}(x) is the polylogarithm function.
a(n) = (1/6) * Sum_{k>=0} k^n * (5/6)^k.
a(n) = (5/6) * Sum_{k=0..n} 6^k * (-1)^(n-k) * A131689(n,k) for n > 0. (End)

A365568 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(2/5).

Original entry on oeis.org

1, 2, 16, 212, 3964, 95804, 2840140, 99760124, 4050900268, 186700658972, 9628444876108, 549349531209404, 34355463031007596, 2336935606239856988, 171779270567736231052, 13568895740353218626300, 1146225546710339427328684, 103113032296428007394503580
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 11 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+2)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 3*k/n) * binomial(n,k) * a(n-k).
a(n) ~ sqrt(Pi) * 2^(1/10) * n^(n - 1/10) / (3^(2/5) * Gamma(2/5) * exp(n) * log(6/5)^(n + 2/5)). - Vaclav Kotesovec, Nov 11 2023
a(0) = 1; a(n) = 2*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A365569 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(3/5).

Original entry on oeis.org

1, 3, 27, 387, 7659, 193491, 5948091, 215446563, 8984708235, 423944899443, 22328393101659, 1298429924941251, 82625791930962219, 5711012035686681363, 426058604580805219323, 34121803137713388036963, 2919847869159667841599947, 265868538017899566748612275
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 11 2023 *)
    With[{nn=20},CoefficientList[Series[1/(6-5*Exp[x])^(3/5),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 03 2024 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 2*k/n) * binomial(n,k) * a(n-k).
a(n) ~ sqrt(2*Pi) * n^(n + 1/10) / (6^(3/5) * Gamma(3/5) * exp(n) * log(6/5)^(n + 3/5)). - Vaclav Kotesovec, Nov 11 2023
a(0) = 1; a(n) = 3*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A365587 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).

Original entry on oeis.org

1, 4, 40, 620, 13020, 345120, 11049960, 414711720, 17851113720, 866838536640, 46873882199520, 2793214943693280, 181854240448514400, 12842833148474299200, 977822088984613771200, 79842750450344086867200, 6959878576257689846265600
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} (5 - k/n) * (k-1)! * binomial(n,k) * a(n-k).

A367376 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(4/5).

Original entry on oeis.org

1, 4, 32, 400, 6800, 146128, 3795728, 115616848, 4040024720, 159282704848, 6993908053520, 338443123424080, 17894609985867152, 1026351961130219728, 63466858180767590672, 4209071260503851502160, 298006515851074633361552, 22434758711582422326267856
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 5*j+4)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+4)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 5) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
Showing 1-5 of 5 results.