cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A320079 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
  1,    1,     1,      1,       1,       1,  ...
  0,    1,     2,      3,       4,       5,  ...
  0,    3,    10,     21,      36,      55,  ...
  0,   14,    76,    222,     488,     910,  ...
  0,   88,   772,   3132,    8824,   20080,  ...
  0,  694,  9808,  55242,  199456,  553870,  ...
		

Crossrefs

Columns k=0..5 give A000007, A007840, A088500, A354263, A354264, A365588.
Main diagonal gives A317171.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: 1/(1 + k*log(1 - x)).
A(n,k) = Sum_{j=0..n} |Stirling1(n,j)|*j!*k^j.
A(0,k) = 1; A(n,k) = k * Sum_{j=1..n} (j-1)! * binomial(n,j) * A(n-j,k). - Seiichi Manyama, May 22 2022

A365587 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).

Original entry on oeis.org

1, 4, 40, 620, 13020, 345120, 11049960, 414711720, 17851113720, 866838536640, 46873882199520, 2793214943693280, 181854240448514400, 12842833148474299200, 977822088984613771200, 79842750450344086867200, 6959878576257689846265600
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} (5 - k/n) * (k-1)! * binomial(n,k) * a(n-k).

A365585 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).

Original entry on oeis.org

1, 2, 16, 214, 4030, 98020, 2923580, 103306320, 4219788720, 195631761360, 10148327972160, 582405469831920, 36635844203963760, 2506613821744700640, 185327181909308762400, 14724431257109269113600, 1251088847268683450630400, 113202071235423519573369600
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 10 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+2)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k).

A365586 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5).

Original entry on oeis.org

1, 3, 27, 390, 7770, 197520, 6108720, 222585360, 9337369920, 443180705520, 23478556469040, 1373311758143520, 87902002849402080, 6111187336982764800, 458573390187299798400, 36939974397639066086400, 3179423992959428231894400, 291190738388834303603395200
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} (5 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k).

A365604 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).

Original entry on oeis.org

1, 5, 45, 610, 11020, 248870, 6744350, 213233400, 7704814200, 313199930400, 14146162064400, 702826758144000, 38093116667766000, 2236695336601458000, 141433354184701746000, 9582086196220281456000, 692463727252196674560000
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2023

Keywords

Crossrefs

Column k=5 of A320080.

Programs

  • Mathematica
    a[n_] := Sum[5^k * k! * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
    With[{nn=20},CoefficientList[Series[1/(1-5*Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, 5^k*k!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} 5^k * k! * Stirling1(n,k).
a(0) = 1; a(n) = 5 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-5 of 5 results.