A320079
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 14, 76, 222, 488, 910, ...
0, 88, 772, 3132, 8824, 20080, ...
0, 694, 9808, 55242, 199456, 553870, ...
-
Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A365587
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).
Original entry on oeis.org
1, 4, 40, 620, 13020, 345120, 11049960, 414711720, 17851113720, 866838536640, 46873882199520, 2793214943693280, 181854240448514400, 12842833148474299200, 977822088984613771200, 79842750450344086867200, 6959878576257689846265600
Offset: 0
-
a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*abs(stirling(n, k, 1)));
A365585
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).
Original entry on oeis.org
1, 2, 16, 214, 4030, 98020, 2923580, 103306320, 4219788720, 195631761360, 10148327972160, 582405469831920, 36635844203963760, 2506613821744700640, 185327181909308762400, 14724431257109269113600, 1251088847268683450630400, 113202071235423519573369600
Offset: 0
-
a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 10 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*abs(stirling(n, k, 1)));
A365586
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5).
Original entry on oeis.org
1, 3, 27, 390, 7770, 197520, 6108720, 222585360, 9337369920, 443180705520, 23478556469040, 1373311758143520, 87902002849402080, 6111187336982764800, 458573390187299798400, 36939974397639066086400, 3179423992959428231894400, 291190738388834303603395200
Offset: 0
-
a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*abs(stirling(n, k, 1)));
A365604
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x)).
Original entry on oeis.org
1, 5, 45, 610, 11020, 248870, 6744350, 213233400, 7704814200, 313199930400, 14146162064400, 702826758144000, 38093116667766000, 2236695336601458000, 141433354184701746000, 9582086196220281456000, 692463727252196674560000
Offset: 0
-
a[n_] := Sum[5^k * k! * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
With[{nn=20},CoefficientList[Series[1/(1-5*Log[1+x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2025 *)
-
a(n) = sum(k=0, n, 5^k*k!*stirling(n, k, 1));
Showing 1-5 of 5 results.