cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002775 a(n) = n^2 * n!.

Original entry on oeis.org

0, 1, 8, 54, 384, 3000, 25920, 246960, 2580480, 29393280, 362880000, 4829932800, 68976230400, 1052366515200, 17086945075200, 294226732800000, 5356234211328000, 102793666719744000, 2074369080655872000, 43913881247588352000, 973160803270656000000, 22531105497723863040000
Offset: 0

Views

Author

Keywords

Comments

Denominators in power series expansion of the higher order exponential integral E(x,m=2,n=1) - (gamma^2/2 + Pi^2/12 + gamma*log(x) + log(x)^2/2), n>0, see A163931. - Johannes W. Meijer, Oct 16 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A163931 (E(x,m,n)), A001563 (n*n!), A091363 (n^3*n!), A091364 (n^4*n!). - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    with(combinat):for n from 0 to 15 do printf(`%d, `,n!/2*sum(2*n, k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
    seq(sum(sum(mul(k, k=1..n),l=1..n),m=1..n), n=0..21); # Zerinvary Lajos, Jan 26 2008
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(1):seq(count(ZLL, size=n)*n^2, n=0..21); # Zerinvary Lajos, Jun 11 2008
    a:=n->add(0+add(n!, j=1..n),j=1..n):seq(a(n), n=0..21); # Zerinvary Lajos, Aug 27 2008
  • Mathematica
    nn=20;a=1/(1-x); Range[0,nn]! CoefficientList[Series[x D[x D[a,x], x], {x,0,nn}], x] (* Geoffrey Critzer, Jan 17 2012 *)
    Table[n^2 n!,{n,0,40}] (* Harvey P. Dale, Aug 01 2021 *)

Formula

E.g.f.: x*(1+x)/(1-x)^3. - Vladeta Jovovic, Dec 01 2002
E.g.f.: x*A'(x) where A(x) is the e.g.f. for A001563. - Geoffrey Critzer, Jan 17 2012
From Alexander Adamchuk, Oct 24 2004: (Start)
Sum of all matrix elements M(i, j) = i/(i+j) multiplied by 2*n!.
a(n) = 2 * n! * Sum_{j=1..n} Sum_{i=1..n} i/(i+j).
Example: a(2) = 2*2! * (1/(1+1) + 1/(1+2) + 2/(2+1) + 2/(2+2)) = 8. (End)
From Amiram Eldar, Dec 24 2023: (Start)
Sum_{n>=1} 1/a(n) = A367731.
Sum_{n>=1} (-1)^(n+1)/a(n) = A367732. (End)

A367732 Decimal expansion of Sum_{k>=1} (-1)^(k+1) / (k^2 * k!).

Original entry on oeis.org

8, 9, 1, 2, 1, 2, 7, 9, 8, 1, 1, 1, 3, 0, 2, 3, 7, 6, 0, 6, 9, 8, 5, 7, 8, 6, 2, 4, 5, 5, 3, 5, 4, 6, 2, 5, 1, 6, 9, 6, 0, 1, 2, 5, 1, 1, 9, 7, 9, 4, 8, 3, 2, 4, 8, 6, 8, 7, 7, 4, 5, 4, 1, 2, 3, 1, 6, 6, 5, 2, 5, 5, 7, 8, 8, 0, 6, 9, 7, 2, 2, 8, 7, 3, 7, 5, 0, 0, 3, 5, 7, 0, 7, 1, 8, 2, 2, 5, 1, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			0.89121279811130237606985786245535...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -1], 10, 100][[1]]
Showing 1-2 of 2 results.