cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A160235 The maximal coefficient of (1+x)*(1+x^4)*(1+x^9)*...*(1+x^(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 14, 21, 32, 54, 87, 144, 230, 383, 671, 1158, 1981, 3408, 6246, 10925, 19463, 34624, 63941, 114954, 208429, 380130, 707194, 1298600, 2379842, 4398644, 8253618, 15303057, 28453809, 53091455, 100061278, 187446097
Offset: 0

Views

Author

Theodore Kolokolnikov, May 05 2009

Keywords

Crossrefs

Programs

  • Maple
    for N from 1 to 40 do
    p := expand(product(1+x^(n^2), n=1..N)):
    L:=convert(PolynomialTools[CoefficientVector](p, x), list):
    mmax := max(op(map(abs, L)));
    lprint(mmax):
    end:
  • Mathematica
    p = 1; Table[p = Expand[p*(1 + x^(n^2))]; Max[CoefficientList[p, x]], {n, 1, 50}] (* Vaclav Kotesovec, May 04 2018 *)
    nmax = 100; poly = ConstantArray[0, nmax*(nmax+1)*(2*nmax+1)/6 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, k*(k+1)*(2*k+1)/6, k^2, -1}]; Print[k, " ", Max[poly]], {k, 2, nmax}]; (* Vaclav Kotesovec, Dec 30 2022 *)

Formula

An asymptotic formula is a(n) ~ sqrt(10/Pi) * n^(-5/2) * 2^n. See for example the reference by Finch.
More precise asymptotics: a(n) ~ sqrt(10/Pi) * 2^n / n^(5/2) * (1 - 35/(18*n) + ...). - Vaclav Kotesovec, Dec 30 2022

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 26 2022

A369764 Maximal coefficient of (1 - x) * (1 - x^8) * (1 - x^27) * ... * (1 - x^(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 7, 7, 7, 8, 11, 18, 23, 28, 32, 40, 55, 58, 81, 118, 128, 171, 204, 327, 395, 555, 843, 1009, 1580, 2254, 3224, 4703, 6999, 4573, 6255, 7760, 12563, 15626, 22328, 33788, 47750, 51522, 84103, 120853, 168565, 312262, 306080
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, expand(b(n-1)*(1-x^(n^3)))) end:
    a:= n-> max(coeffs(b(n))):
    seq(a(n), n=0..52);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Expand[b[n-1]*(1-x^(n^3))]];
    a[n_] := Max[CoefficientList[b[n], x]];
    Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jul 07 2025, after Alois P. Heinz *)
  • PARI
    a(n)=vecmax(Vec(prod(k=1,n,1-x^(k^3))));
    vector(30,n,a(n-1)) \\ Joerg Arndt, Jan 31 2024
    
  • Python
    from collections import Counter
    def A369764(n):
        c = {0:1,1:-1}
        for i in range(2,n+1):
            d = Counter(c)
            for k in c:
                d[k+i**3] -= c[k]
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

Formula

Trivial bounds: 1 <= a(n) <= 2^n. - Charles R Greathouse IV, Jul 07 2025

Extensions

a(45)-a(52) from Alois P. Heinz, Jan 31 2024

A369984 Maximum coefficient of (1 - x) * (1 - x^3) * (1 - x^6) * ... * (1 - x^(n*(n+1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 4, 8, 10, 9, 13, 16, 26, 36, 38, 51, 66, 48, 36, 49, 49, 94, 147, 152, 174, 120, 214, 268, 346, 580, 463, 598, 1024, 1217, 1521, 2473, 2417, 3340, 4795, 7086, 12643, 4808, 5569, 9373, 13083, 9644, 8762, 9516, 10702, 14483
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 - x^(k (k + 1)/2)), {k, 1, n}], x]], {n, 0, 55}]
  • PARI
    a(n) = vecmax(Vec(prod(i=1, n, (1-x^(i*(i+1)/2))))); \\ Michel Marcus, Feb 07 2024

A369986 Maximum of the absolute value of the coefficients of (1 - x) * (1 - x^4) * (1 - x^9) * ... * (1 - x^(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 11, 14, 12, 14, 20, 20, 28, 40, 54, 63, 103, 100, 103, 129, 198, 225, 295, 363, 286, 433, 815, 629, 796, 1236, 1363, 1258, 1723, 2791, 3873, 5244, 6409, 6236, 9724, 13800, 18153, 22993, 23120, 28173, 49135, 46042
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^(k^2)), {k, 1, n}], x]]], {n, 0, 54}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^(i^2)))))); \\ Michel Marcus, Feb 07 2024
Showing 1-4 of 4 results.