cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A065447 Concatenation of 1, 00, 111, 0000, ..., n 1's (if n is odd) or n 0's (if n is even).

Original entry on oeis.org

1, 100, 100111, 1001110000, 100111000011111, 100111000011111000000, 1001110000111110000001111111, 100111000011111000000111111100000000, 100111000011111000000111111100000000111111111, 1001110000111110000001111111000000001111111110000000000
Offset: 1

Views

Author

Lior Manor, Nov 18 2001

Keywords

Comments

a(n) is divisible by A002275([(n+1)/2]) = (10^[(n+1)/2]-1)/9. Cf. A262806. - Max Alekseyev, Jun 02 2013
The unique sequence of binary words a(n) such that the k-th run of a(n) has length k, for k = 1..n . - Clark Kimberling, Mar 08 2024

Examples

			a(2) = 100, the concatenation of one 1, two 0's.
a(3) = 100111, the concatenation of one 1, two 0's, three 1's.
a(4) = 1001110000, the concatenation of one 1, two 0's, three 1's, four 0's.
		

Crossrefs

For decimal version see A065760.

Programs

  • Maple
    a:= n-> parse(cat((irem(i,2)$i)$i=1..n)):
    seq(a(n), n=1..10);  # Alois P. Heinz, Mar 08 2024
  • Mathematica
    FoldList[Join, {1}, Map[ConstantArray[Mod[#, 2], #] &, Range[2, 10]]] (* Peter J. C. Moses, Mar 08 2024 *)
  • PARI
    { m=10; for (n=1, 44, if (n==1, a=1, m*=10; a*=m; if (n%2, a+=(m - 1)/9)); write("b065447.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 19 2009

A371033 a(n) is the integer whose binary expansion starts with 1 and such that the runs of identical bits have lengths n, n-1, n-2, ..., 3, 2, 1.

Original entry on oeis.org

1, 6, 57, 966, 31801, 2065350, 266370105, 68453106630, 35115918982201, 35993681099981766, 73750982613738224697, 302157703921043555451846, 2475577920866839506242796601, 40562343629382474008388259775430, 1329187433441286490429798672020569145
Offset: 1

Views

Author

Clark Kimberling, Mar 18 2024

Keywords

Examples

			Representations as binary words (as in A371032) have decreasing runlengths:
    1:  1
    6:  110
   57:  111001
  966:  1111000110  (runlengths 4,3,2,1)
		

Crossrefs

Cf. A006125, A007088, A065760, A126883, A371032 (binary version).

Programs

  • Maple
    a:= n-> Bits[Join]([seq((1-(n-i) mod 2)$i, i=1..n)]):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jul 09 2024
  • Mathematica
    Map[FromDigits[#, 2] &, Table[Flatten[Map[ConstantArray[Mod[#, 2], n + 1 - #] &, Range[n]]], {n, 16}]]    (* Peter J. C. Moses, Mar 08 2024 *)
  • Python
    def A371033(n):
        c = 0
        for i in range(n):
            c <<= n-i
            if i&1^1:
                c += (1<Chai Wah Wu, Mar 18 2024

Formula

a(n) == n (mod 2). - Alois P. Heinz, Jul 09 2024
a(n) = 2^(n*(n+1)/2) - 1 - a(n-1). - Robert Israel, Jul 09 2024

Extensions

New name from Michel Marcus, Jul 09 2024
a(15) corrected by Alois P. Heinz, Jul 09 2024
Showing 1-2 of 2 results.