cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262806 a(n) = A065447(n) / A002275(floor((n+1)/2)).

Original entry on oeis.org

1, 100, 9101, 91010000, 901900901001, 901900901001000000, 901089109010900090010001, 90108910901090009001000100000000, 9010080101801008010090100900009000100001, 90100801018010080100901009000090001000010000000000, 900999901099900099901099900999901000901000900000900001000001
Offset: 1

Views

Author

Max Alekseyev, Oct 03 2015

Keywords

Examples

			a(5) = 100111000011111 / 111 = 901900901001.
		

Formula

a(n) = A065447(n) / A002275(floor((n+1)/2)).
a(2*n) = a(2*n-1) * 10^(2*n).

A087552 a(1) = 1, then the smallest prime divisor of A065447(n) not included earlier.

Original entry on oeis.org

1, 2, 11, 5, 3, 29, 101, 113, 41, 271, 7, 13, 239, 613, 73, 137, 37, 8291, 9091, 157637, 313, 21649, 9901, 2733970560857, 53, 79, 229, 4649, 31, 13001, 17, 19, 6529, 664193, 6781, 52579, 1111111111111111111
Offset: 1

Views

Author

Amarnath Murthy, Sep 13 2003

Keywords

Comments

Conjecture: Every prime is a member and this is a rearrangement of the noncomposite numbers.
Proof of conjecture: primes 2=a(1) and 5=a(3) are terms, while any other prime divides infinitely many numbers of the form A002275([(n+1)/2]) = (10^[(n+1)/2]-1)/9, which in turn divide A065447(n). Thus every prime will sooner or later appear as a(n). - Max Alekseyev, Jul 03 2019

Examples

			a(6) = 29; smallest prime divisor of 100111000011111000000 not included earlier is 29. The prime divisors are 2, 3, 5, 29, 37, 97 and 106872959.
		

Crossrefs

Extensions

More terms from David Wasserman, Jun 06 2005
Offset corrected by Max Alekseyev, Jul 03 2019

A065760 Concatenation of increasing number of alternating digits in base 2, starting with 1.

Original entry on oeis.org

1, 4, 39, 624, 19999, 1279936, 163831935, 41940975360, 21473779384831, 21989150090066944, 45033779384457103359, 184458360358736295358464, 1511082888058767731576545279, 24757582037954850514150117851136, 811256448219704541647671061746057215
Offset: 1

Views

Author

Lior Manor, Nov 18 2001

Keywords

Examples

			a(5) = 19999 is formed by appending 1 five times (11111) to a(4) in base 2: 100111000011111.
		

Crossrefs

Decimal version of A065447.
Cf. A065761.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          (t-> (a(n-1)+t)*2^n-t)(irem(n,2)))
        end:
    seq(a(n), n=1..17);  # Alois P. Heinz, Mar 08 2024
  • Mathematica
    With[{nn=20}, Table[FromDigits[Flatten[Take[Table[Table[If[EvenQ[n],0,1], {n}], {n,nn}], j]], 2], {j, nn}]] (* Harvey P. Dale, Sep 09 2012 *)
  • PARI
    baseI(x, b)= { local(d, e=0, f=1); while (x>0, d=x-10*(x\10); x\=10; e+=d*f; f*=b); return(e) } { c=1; for (n=1, 50, if (n==1, a=1; b=1, c=c*10 + 1; if (n%2, d=c, d=0); b=b*10^n + d; a=baseI(b, 2)); write("b065760.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 30 2009

Formula

a(n) = a(n-1) * 2^n if n is even, (a(n-1) + 1) * 2^n - 1 if n is odd. - Franklin T. Adams-Watters, Sep 18 2012

A065761 Concatenation of increasing number of alternating digits in base 2, starting with 0.

Original entry on oeis.org

0, 3, 24, 399, 12768, 817215, 104603520, 26778501375, 13710592704000, 14039646928897023, 28753196910381103104, 117773094544920998318079, 964797190511992818221703168, 15807237169348490333744384720895
Offset: 1

Views

Author

Lior Manor, Nov 18 2001

Keywords

Comments

The first 5 terms in base 2 are 0, (0)11, (0)11000, (0)110001111, (0)11000111100000.

Examples

			a(5) = 12768 is formed by appending 0 five times (00000) to a(4) in base 2: (0)11000111100000.
		

Crossrefs

Programs

  • PARI
    baseI(x, b)= { local(d, e=0, f=1); while (x>0, d=x-10*(x\10); x\=10; e+=d*f; f*=b); return(e) } { c=1; for (n=1, 50, if (n==1, a=0; b=0, c=c*10 + 1; if (n%2, d=0, d=c); b=b*10^n + d; a=baseI(b, 2)); write("b065761.txt", n, " ",a) ) } \\ Harry J. Smith, Oct 30 2009

Formula

a(1) = 0; a(n+1) = append n+1 0's or 1's (alternately) to a(n).

A371032 a(n) is the integer whose decimal digits are 0's or 1's in alternating runs of lengths n, n-1, n-2, ..., 3, 2, 1.

Original entry on oeis.org

1, 110, 111001, 1111000110, 111110000111001, 111111000001111000110, 1111111000000111110000111001, 111111110000000111111000001111000110, 111111111000000001111111000000111110000111001, 1111111111000000000111111110000000111111000001111000110
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2024

Keywords

Examples

			a(1) = 1 has runlength 1; a(2) = 110 has runlengths 2,1; a(3) = 111001 has runlengths 3,2,1.
		

Crossrefs

Cf. A000217 (binary lengths), A007088, A065447, A371033 (decimal version).

Programs

  • Maple
    f:= proc(n) option remember; (10^(n*(n+1)/2)-1)/9 - procname(n-1) end proc:
    f(1):= 1:
    map(f, [$1..30]); # Robert Israel, Jul 09 2024
  • Mathematica
    Flatten[Table[Flatten[Map[ConstantArray[Mod[#, 2], n + 1 - #] &, Range[n]]], {n, 10}]]   (* Peter J. C. Moses, Mar 08 2024 *)
  • Python
    def A371032(n):
        c = 0
        for i in range(n):
            c = (m:=10**(n-i))*c
            if i&1^1:
                c += (m-1)//9
        return c # Chai Wah Wu, Mar 18 2024

Formula

a(n) = A007088(A371033(n)). - Michel Marcus, Jul 09 2024
a(n) = (10^(n*(n+1)/2) - 1)/9 - a(n-1). - Robert Israel, Jul 09 2024

Extensions

New name from Michel Marcus, Jul 09 2024
Showing 1-5 of 5 results.