cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A377051 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the powers of primes.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 4, 1, 0, 0, 5, 1, 0, 0, 0, 7, 2, 1, 1, 1, 1, 8, 1, -1, -2, -3, -4, -5, 9, 1, 0, 1, 3, 6, 10, 15, 11, 2, 1, 1, 0, -3, -9, -19, -34, 13, 2, 0, -1, -2, -2, 1, 10, 29, 63, 16, 3, 1, 1, 2, 4, 6, 5, -5, -34, -97, 17, 1, -2, -3, -4, -6, -10, -16, -21, -16, 18, 115
Offset: 0

Views

Author

Gus Wiseman, Oct 20 2024

Keywords

Comments

Row k of the array is the k-th differences of A000961.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     4     5     7     8     9    11
  k=1:   1     1     1     1     2     1     1     2     2
  k=2:   0     0     0     1    -1     0     1     0     1
  k=3:   0     0     1    -2     1     1    -1     1    -3
  k=4:   0     1    -3     3     0    -2     2    -4     6
  k=5:   1    -4     6    -3    -2     4    -6    10    -8
  k=6:  -5    10    -9     1     6   -10    16   -18     5
  k=7:  15   -19    10     5   -16    26   -34    23     9
  k=8: -34    29    -5   -21    42   -60    57   -14   -42
  k=9:  63   -34   -16    63  -102   117   -71   -28   104
Triangle form:
    1
    2    1
    3    1    0
    4    1    0    0
    5    1    0    0    0
    7    2    1    1    1    1
    8    1   -1   -2   -3   -4   -5
    9    1    0    1    3    6   10   15
   11    2    1    1    0   -3   -9  -19  -34
   13    2    0   -1   -2   -2    1   10   29   63
   16    3    1    1    2    4    6    5   -5  -34  -97
		

Crossrefs

Row k=0 is A000961, exclusive A246655.
Row k=1 is A057820.
Row k=2 is A376596.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
For squarefree numbers we have A377038, nonsquarefree A377046.
Triangle row-sums are A377052, absolute version A377053.
Column n = 1 is A377054, for primes A007442 or A030016.
First position of 0 in each row is A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = Sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*A000961(i+k).

A377037 Position of first zero in the n-th differences of the composite numbers (A002808), or 0 if it does not appear.

Original entry on oeis.org

1, 14, 2, 65, 1, 83, 2, 7, 1, 83, 2, 424, 12, 32, 11, 733, 10, 940, 9, 1110, 8, 1110, 7, 1110, 6, 1110, 112, 1110, 111, 1110, 110, 2192, 109, 13852, 108, 13852, 107, 13852, 106, 13852, 105, 17384, 104, 17384, 103, 17384, 102, 17384, 101, 27144, 552, 28012, 551
Offset: 2

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Examples

			The third differences of the composite numbers are:
  -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -2, 1, 0, 0, 1, -1, -1, ...
so a(3) = 14.
		

Crossrefs

The version for prime instead of composite is A376678.
For noncomposite numbers we have A376855.
This is the first position of 0 in row n of the array A377033.
For squarefree instead of composite we have A377042, nonsquarefree A377050.
For prime-power instead of composite we have A377055.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
A377036 gives first term of the n-th differences of the composite numbers, for primes A007442 or A030016.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],CompositeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

Offset 2 from Michel Marcus, Oct 18 2024
a(17)-a(54) from Alois P. Heinz, Oct 18 2024

A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
		

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree numbers we have A377041, nonsquarefree A377049.
This is the first column of the array A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For positions of first zeros we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A001597 lists perfect-powers, complement A007916.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    q=Select[Range[100],#==1||PrimePowerQ[#]&];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)

A376678 Position of first zero in the n-th differences of the primes, or 0 if it does not appear.

Original entry on oeis.org

0, 0, 2, 7, 69, 13, 47, 58, 9, 43, 3553, 100, 7019, 14082, 68097, 14526, 149677, 2697, 481054, 979719, 631894, 29811, 25340978, 50574254, 7510843, 210829337, 67248861, 224076286, 910615647, 931510269, 452499644, 2880203722, 396680865, 57954439970, 77572822440, 35394938648
Offset: 0

Views

Author

Gus Wiseman, Oct 14 2024

Keywords

Comments

Do the k-th differences of the primes contain a zero for all k > 1?

Examples

			The third differences of the primes begin:
  -1, 2, -4, 4, -4, 4, 0, -6, 8, ...
so a(3) = 7.
		

Crossrefs

If 1 is considered prime (A008578) we get A376855.
The zeros of second differences are A064113, complement A333214.
This is the position at which 0 first appears in row n of A095195.
For composite instead of prime we have A377037.
For squarefree instead of prime we have A377042, nonsquarefree A377050.
For prime-power instead of prime we have A377055.
A000040 lists the primes, first differences A001223, second A036263.

Programs

  • Mathematica
    nn=100000;
    u=Table[Differences[Select[Range[nn],PrimeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Formula

a(n) = A000720(A349643(n)) for n >= 2. - Pontus von Brömssen, Oct 17 2024

Extensions

a(17)-a(32) from Pontus von Brömssen, Oct 17 2024
a(33)-a(35) from Lucas A. Brown, Nov 03 2024

A376855 Position of first 0 in the n-th differences of the noncomposite numbers (A008578), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 8, 70, 14, 48, 59, 10, 44, 3554, 101, 7020, 14083, 68098, 14527, 149678, 2698, 481055, 979720, 631895, 29812, 25340979, 50574255, 7510844, 210829338, 67248862, 224076287, 910615648, 931510270, 452499645, 2880203723, 396680866, 57954439971, 77572822441, 35394938649
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The third differences of the noncomposite numbers begin: 1, -1, 2, -4, 4, -4, 4, 0, -6, 8, ... so a(3) = 8.
		

Crossrefs

For firsts instead of positions of zeros we have A030016, modern A007442.
These are the first zero-positions in A376682, modern A376678.
For row-sums instead of zero-positions we have A376683, modern A140119.
For absolute row-sums we have A376684, modern A376681.
For composite instead of noncomposite we have A377037.
For squarefree instead of noncomposite we have A377042, nonsquarefree A377050.
For prime-power instead of noncomposite we have A377055.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposite numbers, first differences A075526.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],#==1||PrimeQ[#]&],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(16)-a(21) from Alois P. Heinz, Oct 18 2024
a(22)-a(35) from Lucas A. Brown, Nov 03 2024

A377042 Position of first zero in the n-th differences of the squarefree numbers (A005117), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 11, 8, 57, 14, 11, 13, 1019, 44, 1250, 43, 2721, 42, 249522, 2840, 1989839, 2839, 3373774, 4933, 142715511, 42793, 435650856, 5266, 30119361, 104063, 454172978707, 100285, 434562125244, 2755089, 2409925829164, 2485612
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

a(n) for n even appear to be smaller than a(n) for n odd. - Chai Wah Wu, Oct 19 2024
a(33) > 10^13, unless it is 0. - Lucas A. Brown, Nov 15 2024

Examples

			The fourth differences begin: -3, 3, 1, -6, 7, -5, 3, 0, -2, ... so a(4) = 8
		

Crossrefs

The version for primes is A376678, noncomposites A376855, composites A377037.
This is the first position of 0 in each row of A377038.
For nonsquarefree numbers we have A377050.
For prime-powers we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377039 gives antidiagonal-sums of A377038, absolute version A377040.
A377041 gives first column of A377038, for primes A007442 or A030016.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],SquareFreeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(15)-a(20) from Chai Wah Wu, Oct 19 2024
a(21)-a(32) from Lucas A. Brown, Nov 15 2024

A377052 Antidiagonal-sums of the array A377051(n,k) = n-th term of k-th differences of powers of primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, -6, 45, -50, 113, -98, 73, 274, -1159, 3563, -8707, 19024, -36977, 64582, -98401, 121436, -81961, -147383, 860871, -2709964, 7110655, -17077217, 38873213, -85085216, 179965720, -367884935, 725051361, -1372311916, 2481473639, -4257624155
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Comments

These are the row-sums of the triangle-version of A377051.

Examples

			The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = -6.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
For squarefree numbers we have A377039, nonsquarefree A377047.
These are the antidiagonal-sums of A377051.
The unsigned version is A377053.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377053 Antidiagonal-sums of the absolute value of the array A377051(n,k) = n-th term of k-th differences of powers of primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, 24, 45, 80, 123, 174, 229, 382, 1219, 3591, 8849, 19288, 37899, 67442, 108323, 156054, 206733, 311525, 860955, 2710374, 7111657, 17080759, 38884849, 85124764, 180097856, 368321633, 726482493, 1377039690, 2496856437, 4306569569, 7016267449
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Comments

These are the row-sums of the absolute value of the triangle-version of A377051.

Examples

			The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = 24.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
For squarefree numbers we have A377040, nonsquarefree A377048.
This is the antidiagonal-sums of the absolute value of A377051.
The signed version is A377052.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
    Total/@Abs[Table[t[[j,i-j+1]],{i,nn},{j,i}]]

A377285 Position of first 0 in the n-th differences of the strict partition numbers A000009, or 0 if 0 does not appear.

Original entry on oeis.org

0, 1, 1, 5, 5, 8, 20, 7, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Comments

Open problem: Do the 9th differences of the strict integer partition numbers contain a zero? If so, we must have a(9) > 10^5.
a(12) = 47. Conjecture: a(n) = 0 for n > 12. - Chai Wah Wu, Dec 15 2024

Examples

			The 7th differences of A000009 are: 25, -16, 7, -6, 10, -9, 0, 10, ... so a(7) = 7.
		

Crossrefs

For primes we have A376678.
For composites we have A377037.
For squarefree numbers we have A377042.
For nonsquarefree numbers we have A377050.
For prime-powers we have A377055.
Position of first zero in each row of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives first column (up to sign).
- A378970 gives row-sums.
- A378971 gives row-sums of absolute value.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Table[Position[Differences[PartitionsQ/@Range[0,100],k],0][[1,1]],{k,1,8}]
  • PARI
    a(n, nn=100) = my(q='q+O('q^nn), v=Vec(eta(q^2)/eta(q))); for (i=1, n, my(w=vector(#v-1, k, v[k+1]-v[k])); v = w;); my(vz=select(x->x==0, v, 1)); if (#vz, vz[1]); \\ Michel Marcus, Dec 15 2024

A377036 First term of the n-th differences of the composite numbers. Inverse zero-based binomial transform of A002808.

Original entry on oeis.org

4, 2, 0, -1, 2, -2, 0, 4, -8, 8, 0, -16, 32, -32, -1, 78, -233, 687, -2363, 8160, -25670, 72352, -184451, 430937, -933087, 1888690, -3597221, 6479696, -11086920, 18096128, -28307626, 42644791, -62031001, 86466285, -110902034, 110907489, -52325, -483682930
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Crossrefs

The version for prime instead of composite is A007442.
For noncomposite numbers we have A030016.
This is the first column (n=1) of A377033.
For row-sums we have A377034, absolute version A377035.
First zero positions are A377037, cf. A376678, A376855, A377042, A377050, A377055.
For squarefree instead of composite we have A377041, nonsquarefree A377049.
For prime-power instead of composite we have A377054.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composite numbers, differences A073783, seconds A073445.
A008578 lists the noncomposites, differences A075526.
Cf: A018252, A065310, A065890, A140119, A173390, A333214, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]-1}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), ..., q(m)) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)
Showing 1-10 of 10 results.