cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A319048 a(n) is the greatest k such that A000010(k) divides n where A000010 is the Euler totient function.

Original entry on oeis.org

2, 6, 2, 12, 2, 18, 2, 30, 2, 22, 2, 42, 2, 6, 2, 60, 2, 54, 2, 66, 2, 46, 2, 90, 2, 6, 2, 58, 2, 62, 2, 120, 2, 6, 2, 126, 2, 6, 2, 150, 2, 98, 2, 138, 2, 94, 2, 210, 2, 22, 2, 106, 2, 162, 2, 174, 2, 118, 2, 198, 2, 6, 2, 240, 2, 134, 2, 12, 2, 142, 2, 270, 2, 6, 2, 12, 2, 158, 2, 330
Offset: 1

Views

Author

Michel Marcus, Sep 09 2018

Keywords

Comments

Sándor calls this function the totient maximum function and remarks that this function is well-defined, since a(n) can be at least 2, and cannot be greater than n^2 (when n > 6).

Crossrefs

Cf. A000010 (Euler totient), A061026 (the totient minimum function).
Cf. A319068 (the analog for the sum of divisors).
Right border of A378638.

Programs

  • Mathematica
    a[n_] := Module[{kmax = If[n <= 6, 10 n, n^2]}, For[k = kmax, True, k--, If[Divisible[n, EulerPhi[k]], Return[k]]]];
    Array[a, 80] (* Jean-François Alcover, Sep 17 2018, from PARI *)
  • PARI
    a(n) = {my(kmax = if (n<=6, 10*n, n^2)); forstep (k=kmax, 1, -1, if ((n % eulerphi(k)) == 0, return (k)););}
    
  • PARI
    \\ (The first two functions could probably be combined in a smarter way):
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ From A014197 by M. F. Hasler
    A057635(n) = if(1==n,2,if((n%2),0,my(k=A014197(n),i=n); if(!k, 0, while(k, i++; if(eulerphi(i)==n, k--)); (i))));
    A319048(n) = { my(m=0); fordiv(n,d, m = max(m,A057635(d))); (m); }; \\ Antti Karttunen, Sep 09 2018
    
  • PARI
    a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invphiMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Max_{d|n} A057635(d). - Antti Karttunen, Sep 09 2018

A378636 Irregular triangle read by rows: row n lists all m <= n such that phi(m) divides n, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 6, 1, 2, 1, 2, 3, 4, 5, 6, 8, 1, 2, 1, 2, 3, 4, 6, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 1, 2, 1, 2, 3, 4, 6, 1, 2, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 1, 2, 1, 2, 3, 4, 6, 7, 9, 14, 18, 1, 2, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12
Offset: 1

Views

Author

Paolo Xausa, Dec 02 2024

Keywords

Comments

If n = 2 or an odd number >= 3, row n is {1, 2}.
If n is an even number >= 4, row n begins with {1, 2, 3, 4}.

Examples

			Triangle begins:
  n\k| 1  2  3  4  5  6  7   8   9  10  11 ...
  --------------------------------------------
   1 | 1;
   2 | 1, 2;
   3 | 1, 2;
   4 | 1, 2, 3, 4;
   5 | 1, 2;
   6 | 1, 2, 3, 4, 6;
   7 | 1, 2;
   8 | 1, 2, 3, 4, 5, 6, 8;
   9 | 1, 2;
  10 | 1, 2, 3, 4, 6;
  11 | 1, 2;
  12 | 1, 2, 3, 4, 5, 6, 7,  8,  9, 10, 12;
  13 | 1, 2;
  14 | 1, 2, 3, 4, 6;
  15 | 1, 2;
  16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16;
  17 | 1, 2;
  18 | 1, 2, 3, 4, 6, 7, 9, 14, 18;
  19 | 1, 2;
  20 | 1, 2, 3, 4, 5, 6, 8, 10, 11, 12;
  ...
		

Crossrefs

Cf. A069932 (row lengths), A362469 (row sums), A378637 (right border).
Subsequence of A378638.
Cf. A000010.

Programs

  • Mathematica
    With[{nmax = 25}, Table[If[OddQ[n] && n > 2, {1, 2}, PositionIndex[Divisible[n, #[[;; n]]]][True]], {n, nmax}] & [EulerPhi[Range[nmax]]]]
  • PARI
    row(n) = select(x->!(n % eulerphi(x)), [1..n]); \\ Michel Marcus, Dec 05 2024

A070633 a(n) is the number of k>0 such that phi(k) divides n.

Original entry on oeis.org

2, 5, 2, 9, 2, 9, 2, 14, 2, 7, 2, 19, 2, 5, 2, 20, 2, 13, 2, 16, 2, 7, 2, 34, 2, 5, 2, 11, 2, 13, 2, 27, 2, 5, 2, 31, 2, 5, 2, 30, 2, 13, 2, 14, 2, 7, 2, 51, 2, 7, 2, 11, 2, 15, 2, 19, 2, 7, 2, 37, 2, 5, 2, 35, 2, 13, 2, 9, 2, 9, 2, 63, 2, 5, 2, 9, 2, 11, 2, 46, 2, 7, 2, 31, 2, 5, 2, 25, 2, 17, 2
Offset: 1

Views

Author

Benoit Cloitre, May 13 2002

Keywords

Comments

Inverse Möbius transform of A014197. - Antti Karttunen, Sep 10 2018

Crossrefs

Row lengths of A378638.

Programs

  • PARI
    for(n=1,120,print1(sum(i=1,100*n,if(n%eulerphi(i),0,1)),","));
    
  • PARI
    \\ In contrast to above program, this is safe in any range 1..n:
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197 by M. F. Hasler
    A070633(n) = sumdiv(n, d, A014197(d)); \\ Antti Karttunen, Sep 10 2018
    
  • PARI
    a(n) = sumdiv(n, d, invphiNum(d)); \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

From Antti Karttunen, Sep 10 2018: (Start)
a(n) = Sum_{d|n} A014197(d).
a(n) >= A069932(n).
a(A000010(n)) = A071181(n).
(End)

A378639 a(n) = sum of all m such that phi(m) divides n, where phi is the Euler totient function (A000010).

Original entry on oeis.org

3, 16, 3, 51, 3, 64, 3, 156, 3, 49, 3, 265, 3, 16, 3, 387, 3, 202, 3, 302, 3, 85, 3, 991, 3, 16, 3, 138, 3, 190, 3, 968, 3, 16, 3, 1058, 3, 16, 3, 1240, 3, 340, 3, 419, 3, 157, 3, 2736, 3, 49, 3, 210, 3, 445, 3, 620, 3, 193, 3, 1723, 3, 16, 3, 2283, 3, 334, 3, 51, 3, 262
Offset: 1

Views

Author

Paolo Xausa, Dec 03 2024

Keywords

Crossrefs

Row sums of A378638.

Programs

  • Maple
    f:= proc(n) local d;
      if n::odd then return 3 fi;
      3+add(convert(numtheory:-invphi(d),`+`), d = select(type,numtheory:-divisors(n),even))
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 05 2024
  • Mathematica
    With[{nmax = 100}, Table[If[OddQ[n], 3, Total[PositionIndex[Divisible[n, #[[;; Max[n^2, 6]]]]][True]]], {n, nmax}] & [EulerPhi[Range[nmax^2]]]]
  • PARI
    a(n) = vecsum(select(x->!(n % eulerphi(x)), [1..max(n^2, 6)])); \\ Michel Marcus, Dec 05 2024

Formula

a(2*k+1) = 3, for k >= 0.

A378640 Smallest m such that phi(m) does not divide n, where phi is the Euler totient function (A000010).

Original entry on oeis.org

3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 15, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5
Offset: 1

Views

Author

Paolo Xausa, Dec 05 2024

Keywords

Comments

Up to n = 10^7 the distinct terms of the sequence (which are also the record values) are {3, 5, 7, 11, 15, 17, 19, 23, 29, 47, 51, 53}. Is this A076245 (for n >= 2)?
First differs from A095366 at n = 60.
It appears that a(n) = A095366(n) except when n = 60*(2*k + 1), with k >= 0, where a(n) = 15 while A095366(n) = 17.

Crossrefs

Programs

  • Mathematica
    A378640[n_] := If[OddQ[n], 3, Module[{m = 4}, While[Divisible[n, EulerPhi[++m]]]; m]];
    Array[A378640, 100]

Formula

a(n) = 3 if n is odd.
Showing 1-5 of 5 results.