cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A069932 Number of k, 1<=k<=n, such that phi(k) divides n.

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 2, 7, 2, 5, 2, 11, 2, 5, 2, 11, 2, 9, 2, 10, 2, 5, 2, 19, 2, 5, 2, 9, 2, 11, 2, 16, 2, 5, 2, 20, 2, 5, 2, 18, 2, 9, 2, 10, 2, 5, 2, 32, 2, 7, 2, 9, 2, 13, 2, 15, 2, 5, 2, 26, 2, 5, 2, 22, 2, 11, 2, 9, 2, 7, 2, 38, 2, 5, 2, 9, 2, 9, 2, 30, 2, 5, 2, 23, 2, 5, 2, 17, 2, 17, 2, 10, 2, 5
Offset: 1

Views

Author

Benoit Cloitre, May 05 2002

Keywords

Comments

Unlike A070633, this sequence does not give the number of all integers of the form phi(k) dividing n (for some n and some m > n, phi(m) divides n).

Crossrefs

Row lengths of A378636.

Programs

  • Mathematica
    a[n_] := Boole[ Divisible[n, EulerPhi[#]]] & /@ Range[n] // Total; Table[a[n], {n, 1, 94}] (* Jean-François Alcover, May 23 2013 *)
  • PARI
    for(n=1,150,print1(sum(i=1,n,if(n%eulerphi(i),0,1)),","))
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,1/(1-x^eulerphi(k)),x*O(x^n)),n))
    
  • PARI
    A069932(n) = sum(k=1, n, !(n%eulerphi(k))); \\ Antti Karttunen, Sep 10 2018
    
  • PARI
    a(n) = sumdiv(n, d, #select(x -> x<=n, invphi(d))); \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

Asymptotically (still conjectured): Sum_{k=1..n} a(k) = C*n*log(n) + o(n*log(n)) with C = 1.5...
G.f.: Sum_{k>=1} 1/(1-x^phi(k)).
a(n) <= A070633(n). - Antti Karttunen, Sep 10 2018
a(n) = Sum_{k=1..n} (1 - ceiling(n/phi(k)) + floor(n/phi(k))). - Wesley Ivan Hurt, Apr 21 2023
a(n) = n - A378642(n). - Paolo Xausa, Dec 06 2024

A319048 a(n) is the greatest k such that A000010(k) divides n where A000010 is the Euler totient function.

Original entry on oeis.org

2, 6, 2, 12, 2, 18, 2, 30, 2, 22, 2, 42, 2, 6, 2, 60, 2, 54, 2, 66, 2, 46, 2, 90, 2, 6, 2, 58, 2, 62, 2, 120, 2, 6, 2, 126, 2, 6, 2, 150, 2, 98, 2, 138, 2, 94, 2, 210, 2, 22, 2, 106, 2, 162, 2, 174, 2, 118, 2, 198, 2, 6, 2, 240, 2, 134, 2, 12, 2, 142, 2, 270, 2, 6, 2, 12, 2, 158, 2, 330
Offset: 1

Views

Author

Michel Marcus, Sep 09 2018

Keywords

Comments

Sándor calls this function the totient maximum function and remarks that this function is well-defined, since a(n) can be at least 2, and cannot be greater than n^2 (when n > 6).

Crossrefs

Cf. A000010 (Euler totient), A061026 (the totient minimum function).
Cf. A319068 (the analog for the sum of divisors).
Right border of A378638.

Programs

  • Mathematica
    a[n_] := Module[{kmax = If[n <= 6, 10 n, n^2]}, For[k = kmax, True, k--, If[Divisible[n, EulerPhi[k]], Return[k]]]];
    Array[a, 80] (* Jean-François Alcover, Sep 17 2018, from PARI *)
  • PARI
    a(n) = {my(kmax = if (n<=6, 10*n, n^2)); forstep (k=kmax, 1, -1, if ((n % eulerphi(k)) == 0, return (k)););}
    
  • PARI
    \\ (The first two functions could probably be combined in a smarter way):
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ From A014197 by M. F. Hasler
    A057635(n) = if(1==n,2,if((n%2),0,my(k=A014197(n),i=n); if(!k, 0, while(k, i++; if(eulerphi(i)==n, k--)); (i))));
    A319048(n) = { my(m=0); fordiv(n,d, m = max(m,A057635(d))); (m); }; \\ Antti Karttunen, Sep 09 2018
    
  • PARI
    a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invphiMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Max_{d|n} A057635(d). - Antti Karttunen, Sep 09 2018

A378638 Irregular triangle read by rows: row n lists all m such that phi(m) divides n, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 1, 2, 3, 4, 6, 1, 2, 1, 2, 3, 4, 5, 6, 8, 10, 12, 1, 2, 1, 2, 3, 4, 6, 7, 9, 14, 18, 1, 2, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 1, 2, 1, 2, 3, 4, 6, 11, 22, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 21, 26, 28, 36, 42, 1, 2, 1, 2, 3, 4, 6, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Dec 03 2024

Keywords

Comments

If n is odd, row n is {1, 2}.
If n is even, row n begins with {1, 2, 3, 4}.

Examples

			Triangle begins:
  n\k| 1  2  3  4  5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 ...
  ----------------------------------------------------------------------------------
   1 | 1, 2;
   2 | 1, 2, 3, 4, 6;
   3 | 1, 2;
   4 | 1, 2, 3, 4, 5,  6,  8, 10, 12;
   5 | 1, 2;
   6 | 1, 2, 3, 4, 6,  7,  9, 14, 18;
   7 | 1, 2;
   8 | 1, 2, 3, 4, 5,  6,  8, 10, 12, 15, 16, 20, 24, 30;
   9 | 1, 2;
  10 | 1, 2, 3, 4, 6, 11, 22;
  11 | 1, 2;
  12 | 1, 2, 3, 4, 5,  6,  7,  8,  9, 10, 12, 13, 14, 18, 21, 26, 28, 36, 42;
  13 | 1, 2;
  14 | 1, 2, 3, 4, 6;
  15 | 1, 2;
  16 | 1, 2, 3, 4, 5,  6,  8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 60;
  17 | 1, 2;
  18 | 1, 2, 3, 4, 6,  7,  9, 14, 18, 19, 27, 38, 54;
  19 | 1, 2;
  20 | 1, 2, 3, 4, 5,  6,  8, 10, 11, 12, 22, 25, 33, 44, 50, 66;
  ...
		

Crossrefs

Cf. A070633 (row lengths), A319048 (right border), A378639 (row sums).
Supersequence of A378636.
Cf. A000010.

Programs

  • Mathematica
    With[{nmax = 25}, Table[If[OddQ[n], {1, 2}, PositionIndex[Divisible[n, #[[;; Max[n^2, 6]]]]][True]], {n, nmax}] & [EulerPhi[Range[nmax^2]]]]
  • PARI
    row(n) = select(x->!(n % eulerphi(x)), [1..max(n^2, 6)]); \\ Michel Marcus, Dec 05 2024

Formula

T(n,k) <= n^2, for n > 2 (see A319048).
Showing 1-4 of 4 results.