cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A251568 Expansion of e.g.f. exp(x*C(x)^2) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 5, 43, 529, 8501, 169021, 4010455, 110676833, 3484717129, 123320412181, 4847038223171, 209536628422705, 9882471447634813, 505033804901100749, 27802319803528367791, 1640388588050579832001, 103275015543414629215505, 6910877628962983581031333
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 529*x^4/4! + 8501*x^5/5! + ...
where
log(A(x)) = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + ... + A000108(n)*x^n + ...
		

Crossrefs

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n,n)/(n+1):
    a := n -> `if`(n=0, 1, n!*CatalanNumber(n)*hypergeom([1-n], [2+n], -1)):
    seq(simplify(a(n)), n=0..9); # Peter Luschny, May 04 2017
  • Mathematica
    Flatten[{1,Table[Sum[n!/k!*Binomial[2*n-1,n-k]*2*k/(n+k),{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 14 2015 *)
    a[0] = 1; a[n_] := (2n)!/(n+1)! Hypergeometric1F1[1-n, n+2, -1];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 03 2017, after Vladimir Kruchinin *)
  • PARI
    {a(n)=my(C=1);for(i=1,n,C=1+x*C^2 +x*O(x^n));n!*polcoef(exp(x*C^2),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, n!/k! * binomial(2*n-1, n-k) * 2*k/(n+k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^2/x))) \\ Seiichi Manyama, Mar 15 2025

Formula

a(n) = Sum_{k=0..n} (n!/k!) * binomial(2*n-1, n-k) * 2*k/(n+k) for n > 0 with a(0)=1.
E.g.f. A(x) satisfies: A'(x)/A(x) = C'(x) = C(x)^2 / sqrt(1-4*x) where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
Recurrence equation: a(n) = -(n^2 - 5*n +1)*a(n-1) + n*(2*n - 3)*(2*n - 4)*a(n-2) with a(0) = 1, a(1) = 1. It appears that a(n) - 1 is divisible by n*(n - 1) for n >= 2. - Peter Bala, Feb 14 2015
a(n) ~ 2^(2*n+1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Feb 14 2015
a(n) are special values of the hypergeometric function 1F1: a(n) = 4^n*Gamma(n+1/2)*exp(-1)*hypergeom([2*n+1], [n+2], 1)/(sqrt(Pi)*(n+1)), for n>=1. - Karol A. Penson, Jun 01 2015
a(n) = ((2*n)!/(n+1)!)*hypergeometric([1-n],[n+2],-1), a(0)=1. - Vladimir Kruchinin, May 03 2017
From Seiichi Manyama, Mar 15 2025: (Start)
E.g.f.: exp( (1/x) * Series_Reversion( x*(1-x) )^2 ).
E.g.f.: exp( Series_Reversion( x/(1+x)^2 ) ). (End)

A382033 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 7, 109, 2653, 88261, 3731581, 191571493, 11576241769, 804996352873, 63324553740121, 5559962513556001, 539015912053933645, 57188111522488589293, 6591136171961660099509, 820029701725988751533341, 109537705061927547203868241, 15635869913619342121140932689
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(3*n, k)/(n-k-1)!));

Formula

a(n) = (n-1)! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(3*n,k)/(n-k-1)! for n > 0.
Let F(x) be the e.g.f. of A377554. F(x) = log(A(x))/x = B(x*A(x))^3.
E.g.f.: A(x) = exp( Series_Reversion( x/(1 + x*exp(x))^3 ) ).

A382034 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 9, 181, 5713, 246881, 13570081, 906180997, 71250724833, 6448375469665, 660286026034561, 75472025139452261, 9525947428687403473, 1315935073971181422721, 197485196722573989608289, 31993978774204625549549221, 5565216938342017912128576961, 1034506012356981473110554574145
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(4*n, k)/(n-k-1)!));

Formula

a(n) = (n-1)! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(4*n,k)/(n-k-1)! for n > 0.
Let F(x) be the e.g.f. of A377630. F(x) = log(A(x))/x = B(x*A(x))^4.
E.g.f.: A(x) = exp( Series_Reversion( x/(1 + x*exp(x))^4 ) ).

A382036 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)^2) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.

Original entry on oeis.org

1, 1, 7, 94, 1901, 51696, 1771267, 73317616, 3560476761, 198531343360, 12502959204671, 877829600807424, 67991178144166213, 5759309535250776064, 529665762441463234875, 52560256640090731902976, 5597859153748148214250673, 636915477940535101583130624, 77102760978489789146276986231
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(2*n, k)/(n-k-1)!));

Formula

E.g.f. A(x) satisfies A(x) = exp(x*A(x) * C(x*A(x))^2).
a(n) = (n-1)! * Sum_{k=0..n-1} (n+1)^(n-k-1) * binomial(2*n,k)/(n-k-1)! for n > 0.
E.g.f.: exp( Series_Reversion( x*exp(-x)/(1+x)^2 ) ).
a(n) ~ 2^(n - 1/2) * n^(n-1) / ((sqrt(2) - 1)^(n - 1/2) * exp((sqrt(2) - 1)*(sqrt(2)*n - 1))). - Vaclav Kotesovec, Mar 15 2025

A382058 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 67, 1465, 44541, 1735681, 82527439, 4632741905, 299875704697, 21989097804961, 1801520077445331, 163092373817762137, 16168084561101716725, 1741946677697976052577, 202668693570279026375671, 25324088113475137179021601, 3382305512670022948599733233, 480858973986045019386825360577
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

Let F(x) be the e.g.f. of A377546. F(x) = log(A(x))/x = B(x*A(x))^2.
E.g.f.: A(x) = exp( Series_Reversion( x*(1 - x*exp(x))^2 ) ).
a(n) = 2 * n! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.
Showing 1-5 of 5 results.