cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A364896 Decimal expansion of the 4-volume of the unit regular 120-cell.

Original entry on oeis.org

7, 8, 7, 8, 5, 6, 9, 8, 1, 0, 3, 4, 3, 3, 7, 9, 3, 3, 9, 9, 2, 1, 1, 6, 8, 5, 9, 1, 1, 3, 8, 8, 7, 4, 3, 6, 4, 9, 6, 4, 0, 8, 9, 8, 5, 8, 8, 1, 5, 3, 1, 4, 0, 8, 9, 0, 2, 7, 4, 5, 6, 3, 9, 5, 0, 3, 6, 0, 4, 3, 1, 3, 1, 4, 3, 6, 6, 3, 1, 1, 3, 5, 2, 1, 7, 9, 0, 5, 3, 9, 4, 7, 6, 7, 6, 0, 3, 7
Offset: 3

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (1575+705*sqrt(5))/4.

Examples

			Equals 787.85698103433793399211...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), this sequence (120-cell), A364897 (600-cell).
Cf. A102769 (decimal expansion of the volume of the unit regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(1575 + 705*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (1575+705*sqrt(5))/4

A364897 Decimal expansion of the 4-volume of the unit regular 600-cell.

Original entry on oeis.org

2, 6, 4, 7, 5, 4, 2, 4, 8, 5, 9, 3, 7, 3, 6, 8, 5, 6, 0, 2, 5, 5, 7, 3, 3, 5, 4, 2, 9, 5, 7, 0, 4, 7, 6, 4, 7, 1, 5, 0, 3, 8, 6, 4, 7, 4, 7, 5, 7, 2, 0, 3, 5, 7, 7, 6, 6, 9, 3, 1, 0, 7, 7, 8, 3, 8, 1, 5, 7, 5, 5, 7, 8, 5, 2, 3, 6, 2, 8, 0, 6, 2, 1, 3, 4, 0, 0, 9, 0, 0, 5, 2, 3, 6, 7, 3, 8, 9, 2
Offset: 2

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (50+25*sqrt(5))/4.

Examples

			Equals 26.47542485937368560255...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), this sequence (600-cell).
Cf. A102208 (decimal expansion of the volume of the unit regular icosahedron).

Programs

  • Mathematica
    First[RealDigits[(50 + 25*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (50+25*sqrt(5))/4

A337301 Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2
Offset: 4

Views

Author

Mohammed Yaseen, Aug 22 2020

Keywords

Examples

			Triangle begins:
1;
2, 2;
2, 2, 2;
2, 2, 2, 2;
2, 2, 3, 2, 2;
2, 3, 3, 3, 3, 2;
2, 3, 3, 3, 3, 3, 2;
2, 3, 3, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 4, 3, 3, 2;
2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2;
...
Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4.
The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are:
AC = 1.84775...
AD = 2.41421...
AE = 2.61312...
AF = 2.41421...
AG = 1.84775...
So the row for n=8 is 2, 2, 3, 2, 2.
		

Crossrefs

Cf. A064313.
Decimal expansion of diagonal lengths of regular n-gons with unit edge length:
n=4 A002193.
n=5 A001622.
n=9 A332437.
n=11 A231186.

Programs

  • Mathematica
    T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* Stefano Spezia, Sep 07 2020 *)

Formula

T(n,k) = round(sin((k+1)*Pi/n)/sin(Pi/n)), n >= 4, 1 <= k <= n-3.

A305187 Decimal expansion of the solution to x^x^x = 3.

Original entry on oeis.org

1, 6, 3, 5, 0, 7, 8, 4, 7, 4, 6, 3, 6, 3, 7, 5, 2, 4, 5, 8, 9, 9, 7, 5, 7, 1, 9, 8, 7, 8, 7, 5, 0, 0, 8, 8, 8, 1, 2, 3, 9, 8, 2, 1, 9, 2, 7, 6, 8, 1, 4, 6, 1, 9, 3, 5, 1, 7, 4, 4, 4, 5, 6, 2, 8, 9, 6, 7, 6, 2, 4, 6, 2, 3, 1, 6, 3, 0, 3, 6, 7, 6, 2, 0, 9, 1, 9, 5, 5, 7, 2, 0, 7, 9, 0, 4, 6, 9, 7, 3, 4, 1, 0, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 27 2018

Keywords

Comments

Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g.,
decimal
m equation solution x(m) expansion
==== ==================== ============= =============
1 x = 1 1.00000000... A000007
2 x^x = 2 1.55961046... A030798
3 x^x^x = 3 1.63507847... this sequence
4 x^x^x^x = 4 1.62036995...
5 x^x^x^x^x = 5 1.59340881...
6 x^x^x^x^x^x = 6 1.56864406...
7 x^x^x^x^x^x^x = 7 1.54828598...
.
10 x^x^x^x^...^x = 10 1.50849792...
.
100 x^x^x^x^...^x = 100 1.44567285...
.
1000 x^x^x^x^...^x = 1000 1.44467831...
.
Then x(1) < x(m) < x(3) for all m >= 4.
Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g.,
decimal
k equation solution y(k/2) expansion
= ========================= =============== =========
1 y = (1/2)*y^y 2 A000038
2 y^y = (2/2)*y^y indeterminate
3 y^y^y = (3/2)*y^y 1.6998419085...
4 y^y^y^y = (4/2)*y^y 1.6396207046...
5 y^y^y^y^y = (5/2)*y^y 1.5987769216...
6 y^y^y^y^y^y = (6/2)*y^y 1.5694666408...
7 y^y^y^y^y^y^y = (7/2)*y^y 1.5476452822...
.
What is lim_{k -> infinity} y(k/2)?
Lim_{m -> infinity} x(m) = e^(1/e). - Jon E. Schoenfield, Jul 23 2018
Lim_{k -> infinity} y(k/2) = e^(1/e). - Jon E. Schoenfield, Aug 01 2018

Examples

			1.635078474636375245899757198787500888...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* Robert G. Wilson v, Jun 13 2018 *)
  • PARI
    default(realprecision,333);
    solve(x=1.6, 1.7, x^x^x-3) \\ Joerg Arndt, May 27 2018

Extensions

More digits from Michel Marcus, Joerg Arndt, May 27 2018

A320029 Decimal expansion of sqrt(9 + sqrt(9 + sqrt(9 + sqrt(9 + ...)))) = (sqrt(37) + 1)/2.

Original entry on oeis.org

3, 5, 4, 1, 3, 8, 1, 2, 6, 5, 1, 4, 9, 1, 0, 9, 8, 4, 4, 4, 9, 9, 8, 4, 2, 1, 2, 2, 6, 0, 1, 0, 3, 3, 5, 3, 1, 0, 4, 2, 4, 8, 5, 0, 4, 7, 3, 9, 3, 2, 0, 5, 5, 9, 3, 2, 0, 9, 5, 7, 6, 5, 2, 3, 2, 4, 3, 1, 6, 6, 3, 6, 2, 6, 5, 9, 4, 5, 5, 1, 1, 9, 9, 0, 1, 5, 3, 3, 2, 1, 3, 9, 7, 8, 9, 2, 4, 3, 3, 1, 7, 1, 5, 4, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 03 2018

Keywords

Comments

For x >= 0, sqrt(x + sqrt(x + sqrt(x + sqrt(x + ...)))) = (sqrt(4*x+1) + 1)/2. This is an integer for each x such that 2*x is a term in A000217.

Examples

			3.541381265149109844499842122601033531042485047393205593209576523243166362659...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(37)+1)/2,120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[9, {135}]], 10, 111][[1]] (* or *)
    RealDigits[(Sqrt[37] + 1)/2, 10, 111][[1]]
  • PARI
    (sqrt(37)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Minimal polynomial: x^2 - x - 9. - Stefano Spezia, Jul 02 2025
Previous Showing 21-25 of 25 results.