cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A056995 Numbers k such that k^256 + 1 is prime.

Original entry on oeis.org

1, 278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, 8524, 8644, 8762, 8808, 9024, 9142, 9412, 10892, 12206, 13220, 13222, 13246, 13370, 13738, 14114, 14930
Offset: 1

Views

Author

Robert G. Wilson v, Sep 06 2000

Keywords

References

  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ PowerMod[ n, 256, 2*k*256 + 1 ] != 2*k*256 && k < 10^3, k++ ]; If[ k == 10^3 && PrimeQ[ n^256 + 1 ], Print[ n ] ], {n, 2, 15000, 2} ]
  • PARI
    isA056995(n) = isprime(n^256+1) \\ Michael B. Porter, Apr 01 2010

A057465 Numbers k such that k^512 + 1 is prime.

Original entry on oeis.org

1, 46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, 8678, 8792, 9448, 9452, 9972, 10086, 10448, 10926, 11468, 12754, 13198, 13776, 14734, 16826, 16914, 18334
Offset: 1

Views

Author

Robert G. Wilson v, Sep 08 2000

Keywords

References

  • Dubner, Harvey. "Generalized Fermat primes." J. Recreational Math., 18 (1985): 279-280.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ n^512 + 1 ], Print[ n ] ], {n, 0, 31269} ]
  • PARI
    isA057465(n) = isprime(n^512+1) \\ Michael B. Porter, Apr 02 2010

A037896 Primes of the form k^4 + 1.

Original entry on oeis.org

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001, 723394817, 916636177, 1049760001, 1416468497
Offset: 1

Views

Author

Donald S. McDonald, Feb 27 2000

Keywords

Comments

From Bernard Schott, Apr 22 2019: (Start)
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is a perfect biquadrate: A307690, so this sequence is a subsequence of A078164 and A307690.
If p prime = k^4 + 1, phi(p) = k^4.
The last three Fermat primes in A019434 {17, 257, 65537} belong to this sequence; with F_k = 2^(2^k) + 1 and for k = 2, 3, 4, phi(F_k) = (2^(2^(k-2)))^4. (End)

Examples

			6^4 + 1 = 1297 is prime.
		

Crossrefs

Programs

  • Magma
    [n^4+1: n in [1..200] | IsPrime(n^4+1)]; // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    Select[Range[200]^4+1,PrimeQ] (* Harvey P. Dale, Jul 20 2015 *)
  • PARI
    j=[]; for(n=1,200, if(isprime(n^4+1),j=concat(j,n^4+1))); j
    
  • PARI
    list(lim)=my(v=List([2]),p); forstep(k=2,sqrtnint(lim\1-1,4),2, if(isprime(p=k^4+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
    
  • Sage
    [n^4+1 for n in (1..200) if is_prime(n^4+1)] # G. C. Greubel, Apr 28 2019

Formula

a(n) = A002523(A000068(n)). - Elmo R. Oliveira, Feb 21 2025

Extensions

Corrected and extended by Jason Earls, Jul 19 2001

A088362 Numbers k such that k^4096 + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, 110540, 114690, 125440, 125442, 127596, 138068, 144362, 154908, 157310, 161822, 161900, 166224
Offset: 1

Views

Author

Jeppe Stig Nielsen, Sep 27 2003

Keywords

Crossrefs

Programs

A088361 Numbers n such that n^2048 + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, 46502, 47348, 49190, 49204, 49544, 54514, 57210, 59770, 61184, 66894, 68194, 70574, 72446, 82642
Offset: 1

Views

Author

Jeppe Stig Nielsen, Sep 27 2003

Keywords

Crossrefs

Programs

A226528 Numbers k such that k^(2^13) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, 241860, 248744, 268032, 270674, 302368, 316970, 326260, 347962, 350830, 397468, 410938, 416010, 424584, 425848, 426338
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2013

Keywords

Crossrefs

Programs

Extensions

Missing terms inserted (from link) by Jeppe Stig Nielsen, Apr 14 2017

A226529 Numbers k such that k^(2^14) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, 509622, 528614, 572934, 581424, 638980, 641762, 656210, 698480, 704930, 730352, 795810, 840796, 908086, 975248, 976914, 990908, 1007874, 1037748, 1039970, 1067896, 1082054, 1097352, 1102754, 1132526, 1162996, 1171010, 1177808, 1181388
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2013

Keywords

Crossrefs

Programs

A226530 Numbers b such that b^(2^15) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, 1074542, 1096382, 1113768, 1161054, 1167528, 1169486, 1171824, 1210354, 1217284, 1277444, 1519380, 1755378, 1909372, 1922592, 1986700, 2034902, 2147196, 2167350
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2013

Keywords

Crossrefs

Programs

A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
Offset: 1

Views

Author

Don Reble, Jun 28 2003

Keywords

Comments

Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014

Examples

			a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od
    end proc:
    seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
  • PARI
    a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014

Formula

a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).

A244150 Numbers b such that b^262144+1 is prime.

Original entry on oeis.org

1, 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, 5152128, 5205422, 5828034, 6287774, 6291332, 8521794
Offset: 1

Views

Author

Felix Fröhlich, Jun 21 2014

Keywords

Comments

Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=18.

Crossrefs

Extensions

a(9), announced in message 92163 in PrimeGrid forum, added by Felix Fröhlich, Feb 17 2016
a(10), a(11) sent by Maximilian Pacher, Jun 27 2016, and a(12) on Aug 24 2016. - N. J. A. Sloane
a(13) from Felix Fröhlich, Nov 27 2016
a(14)-a(17) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by and more terms from Jeppe Stig Nielsen, Sep 10 2018
a(27)-a(30) from Jeppe Stig Nielsen, Sep 21 2019
Previous Showing 11-20 of 54 results. Next