cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 3329 results. Next

A153279 Eigentriangle by rows, T(n,k) = A000079(n-k) * (diagonalized matrix of (1,1,3,9,27,81,...)).

Original entry on oeis.org

1, 2, 1, 4, 2, 3, 8, 4, 6, 9, 16, 8, 12, 18, 27, 32, 16, 24, 36, 54, 81, 64, 32, 48, 72, 108, 162, 243, 128, 64, 96, 144, 216, 324, 486, 729, 256, 128, 192, 288, 432, 648, 972, 1458, 2187, 512, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561
Offset: 0

Views

Author

Gary W. Adamson, Dec 23 2008

Keywords

Comments

Row sums = 3^n
Sum of n-th row terms = rightmost term of next row.
Eigensequence of the triangle = A153280: (1, 3, 15, 165, 4785, 397155,...)

Examples

			First few rows of the triangle =
1;
2, 1;
4, 2, 3;
8, 4, 6, 9;
16, 8, 12, 18, 27;
32, 16, 24, 36, 54, 81;
64, 32, 48, 72, 108, 162, 243;
128, 64, 96, 144, 216, 324, 486, 729;
256, 128, 192, 288, 432, 648, 972, 1458, 2187;
512, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561;
...
Row 3 = (8, 4, 6, 9) = termwise products of (8, 4, 2, 1) and (1, 1, 3, 9).
		

Crossrefs

Formula

Triangle read by rows, M*Q. M = triangle T(n,k) = A000079(n-k); powers of 2 in every column. Q = an infinite lower triangular matrix with powers of 3 prefaced with a 1: (1,1,3,9,27,...) as the main diagonal and the rest zeros.

A154715 Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).

Original entry on oeis.org

1, 2, 3, 4, 18, 16, 8, 81, 192, 125, 16, 324, 1536, 2500, 1296, 32, 1215, 10240, 31250, 38880, 16807, 64, 4374, 61440, 312500, 699840, 705894, 262144, 128, 15309, 344064, 2734375, 9797760, 17294403, 14680064, 4782969
Offset: 0

Views

Author

Peter Luschny, Jan 14 2009

Keywords

Comments

Formatted as a square array:
1st row is A000079(n). Subsets of an n-set.
2nd row is A036290(n+1). Special (n+1)-subsets of a 3n-set partitioned into 3-blocks.
2nd column is A066274(n+1). Endofunctions of [n] such that 1 is not a fixed point.
1st column is A000272(n+2). Trees on n labeled nodes (Cayley's formula).
Alternating sum of rows in the triangle, Sum_{k=0..n} (-1)^(n-k) * T(n,k) = n! = A000142(n).
This triangle gives the coefficient of Sidi's polynomials D_{n,2,n}(-z)/(-z), for n >= 0. See [Sidi 1980]. - Wolfdieter Lang, Oct 27 2022

Examples

			Triangle begins as:
   1;
   2,    3;
   4,   18,    16;
   8,   81,   192,    125;
  16,  324,  1536,   2500,   1296;
  32, 1215, 10240,  31250,  38880,  16807;
  64, 4374, 61440, 312500, 699840, 705894, 262144;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*(k+2)^n ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(n,k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
    
  • Maple
    T := proc(n,k) binomial(n,k)*(k+2)^n end;
  • Mathematica
    Table[Binomial[n, k]*(k+2)^n, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 09 2019 *)
  • PARI
    {T(n, k) = binomial(n,k)*(k+2)^n}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(n,k)*(k+2)^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
    

Formula

T(n,k) = binomial(n,k)*(k+2)^n, where n >= 0, and k >= 0.
From Wolfdieter Lang, Oct 20 2022: (Start)
O.g.f. of column k: (-x)^k*(k + 2)^k/(1 - (k + 2)*x)^(k+1), for k >= 0. See |A075513| with offset 0.
E.g.f. of column k: exp((k+2)*x)*((k+2)*x)^k/k!, for k >= 0. (End)
E.g.f. of triangle (of row polynomials in y): exp(2*x)*substitute(z = x*y*exp(x), LambertW(-z)^2/(-z)*2*(1 + LambertW(-z)))). - Wolfdieter Lang, Oct 24 2022

A181174 The "Row2" sums of the powers-of-2 triangle A000079.

Original entry on oeis.org

1, 2, 24, 320, 11264, 688128, 90177536, 22817013760, 11751030521856, 11997870882291712, 24607668363952390144, 100719222642454151823360, 825394103341888069030641664, 13520781109074923362448234774528
Offset: 0

Views

Author

Johannes W. Meijer, Oct 10 2010

Keywords

Comments

The a(n) represent the "Row2" sums, see A180662, of the powers-of-2 triangle A000079. This sequence is related to the Jacobsthal and triangular numbers.

Programs

  • Mathematica
    f[k_] := (2^k) (-1)^(k + 1)
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 22}]    (* A181174 signed *)
    (* Clark Kimberling, Dec 30 2011 *)

Formula

a(n) = 2^(n*(n+1)/2)*(2^(n+1)+(-1)^n)/3.
a(n) = A001045(n+1)*2^A000217(n).

A269383 Permutation of natural numbers: a(1) = 1, a(n) = A000079(A260738(n+1)-1) * ((2 * a(A260739(n+1))) - 1).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 15, 32, 13, 10, 11, 64, 17, 12, 31, 14, 29, 128, 63, 256, 25, 18, 19, 512, 21, 24, 127, 30, 33, 20, 23, 1024, 61, 26, 27, 2048, 57, 4096, 255, 22, 125, 8192, 511, 28, 49, 34, 35, 16384, 37, 48, 1023, 62, 41, 40, 47, 32768, 253, 58, 59, 36, 65, 65536, 39, 126, 45, 131072, 2047, 96, 121, 50, 51, 262144, 53, 60
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2016

Keywords

Crossrefs

Inverse: A269384.
Cf. also A249813, A269373.
Differs from both A246683 and A249813 for the first time at n=18, which here a(18)=12, instead of 128.

Formula

a(1) = 1, a(n) = A000079(A260738(n+1)-1) * ((2 * a(A260739(n+1))) - 1).
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A082902 a(n) = gcd(2^n, sigma(2,n)) = gcd(A000079(n), A001157(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 1, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 1, 2, 1, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Labos Elemer, Apr 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^IntegerExponent[DivisorSigma[2, n], 2]; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    A082902(n) = gcd(2^n, sigma(n, 2)); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A006519(A001157(n)). - Antti Karttunen, Sep 27 2018
Multiplicative with a(2^e) = 1, and a(p^e) = A006519(e+1) for an odd prime p. - Amiram Eldar, Oct 01 2023

A095361 Ratio A095110(n)/A000079(n-2) rounded down.

Original entry on oeis.org

2, 6, 12, 20, 37, 52, 106, 200, 369, 657, 1226, 2191, 4268, 8076, 15291, 28931, 55124, 105982, 202482, 391505
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

This is the average length of maximum Motzkin path prefix (i.e. non-diving portion) found in the "Jacobi-vectors" of all 4k+3 integers in range ]2^n,2^(n+1)]. See A095269-A095270.
The ratios before rounding are: 2, 6, 12, 20, 37.875, 52.9375, 106.28125, 200.25, 369.179687, 657.445312, 1226.675781, 2191.126953, 4268.283691, 8076.054443, 15291.317139, 28931.598755, 55124.513184, 105982.564758, 202482.488968, 391505.689705.

Crossrefs

A095362 gives the same ratios rounded to nearest integer. A095357 gives similar ratios computed only for 4k+3 primes.

Formula

a(1) = 2, a(n) = floor(A095110(n)/A000079(n-2)) for n > 1.

A268675 Self-inverse permutation of natural numbers: a(1) = 1; a(n) = A000079(A193231(A007814(n))) * A250469(a(A268674(n))).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 4, 21, 10, 11, 24, 13, 14, 15, 32, 17, 42, 19, 40, 9, 22, 23, 12, 55, 26, 27, 56, 29, 30, 31, 16, 69, 34, 35, 168, 37, 38, 39, 20, 41, 18, 43, 88, 93, 46, 47, 96, 91, 110, 123, 104, 53, 54, 25, 28, 117, 58, 59, 120, 61, 62, 63, 64, 65, 138, 67, 136, 33, 70, 71, 84, 73, 74, 75, 152, 77, 78, 79, 160
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2016

Keywords

Crossrefs

Formula

a(1) = 1, and for n > 1, a(n) = A000079(A193231(A007814(n))) * A250469(a(A268674(n))).
Other identities. For all n >= 1:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]
A020639(a(n)) = A020639(n). [More generally, it preserves the smallest prime dividing n.]
A055396(a(n)) = A055396(n).

A309530 Number of power-of-two-divisors of sum of divisors of sum of divisors of powers of two: a(n) = A001511(A051027(A000079(n))).

Original entry on oeis.org

1, 3, 4, 4, 6, 4, 8, 5, 5, 10, 5, 6, 14, 12, 12, 6, 18, 10, 20, 11, 9, 9, 6, 8, 8, 18, 6, 15, 7, 16, 32, 7, 11, 22, 17, 14, 7, 24, 22, 13, 5, 13, 11, 12, 20, 10, 7, 11, 9, 16, 33, 22, 6, 10, 15, 17, 28, 12, 6, 20, 62, 36, 12, 9, 24, 16, 5, 26, 12, 26, 10, 18, 6, 12, 16, 28, 19, 26
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Aug 06 2019

Keywords

Examples

			a(0) = A001511(A051027(A000079(0))) = A001511(A051027(A000079(2^0))) = A001511(A051027(1)) = A001511(1) = 1.
		

Crossrefs

Cf. A000043 (numbers m such that m - 1 divides a(m - 1) - 2), A000079, A001511, A051027, A090748.

Programs

  • Magma
    [Valuation(2*SumOfDivisors(SumOfDivisors(2^n)),2): n in [0..89]];
    
  • PARI
    a(n) = valuation(2*sigma(sigma(2^n)), 2); \\ Michel Marcus, Aug 06 2019
    
  • Python
    from sympy import divisor_sigma
    def A309530(n): return ((m:=int(divisor_sigma((1<Chai Wah Wu, Jul 13 2022

Formula

a(n) = A001511(A051027(A000079(n))).

A378144 a(n) = P(n) * 2^floor(log_2(prime(n+1))) = A002110(n) * A000079(A098388(n+1)).

Original entry on oeis.org

1, 4, 24, 120, 1680, 18480, 480480, 8168160, 155195040, 3569485920, 103515091680, 6417935684160, 237463620313920, 9736008432870720, 418648362613440960, 19676473042831725120, 1042853071270081431360, 61528331204934804450240, 7506456407002046142929280, 502932579269137091576261760
Offset: 0

Views

Author

Michael De Vlieger, Nov 17 2024

Keywords

Comments

Last term in row n of A378133.
a(n) is the largest product of a power of 2 and A002110(n) less than A002110(n+1).

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[Product[Prime[i], {i, n}]*2^Floor[Log2[Prime[n + 1]]], {n, 120}]
  • Python
    from sympy import primorial, prime
    def A378144(n): return primorial(n)<Chai Wah Wu, Nov 19 2024

Formula

a(n) = A002110(n)*A000079(A098388(n+1)).

A092176 A067076 + A000079/2.

Original entry on oeis.org

0, 1, 3, 6, 12, 21, 39, 72, 138, 269, 526, 1041, 2067, 4116, 8214, 16409, 32796, 65565, 131104, 262178, 524323, 1048614, 2097192, 4194347, 8388655, 16777265, 33554482, 67108916, 134217781
Offset: 0

Views

Author

David G. Williams (davwill24(AT)aol.com), Apr 03 2004

Keywords

Crossrefs

Previous Showing 21-30 of 3329 results. Next