Original entry on oeis.org
1, 3, 15, 165, 4785, 397155, 97302975, 71128474725, 155700231173025, 1021860617188563075, 20115326249356864131375, 1187830130350772183821825125, 210422919761508941591852499068625, 111827787746815596446398867662527275875
Offset: 0
Triangle M =
1;
1;
2, 1;
4, 2, 3;
8, 4, 6, 9;
16, 8, 12, 18, 27;
...
M^n rapidly converges to this sequence with sufficiently large n.
a(0) = 1, a(1) = 1*(2+3^0) = 3, a(2) = 3*(2+3^1) = 15, a(3) = 15*(2+3^2) = 165, a(4) = 165*(2+3^3) = 4785, ... - _Philippe Deléham_, Sep 27 2014
-
RecurrenceTable[{a[n+1] == a[n]*(2 + 3^n), a[0] == 1}, a, {n, 0, 15}] (* Vaclav Kotesovec, Jan 22 2023 *)
Table[2^n * QPochhammer[-1/2, 3, n], {n, 0, 15}] (* Vaclav Kotesovec, Jan 22 2023 *)
nxt[{n_,a_}]:={n+1,a(2+3^n)}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Mar 28 2024 *)
A000244
Powers of 3: a(n) = 3^n.
Original entry on oeis.org
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Banchoff, Counting the Faces of Higher-Dimensional Cubes, Beyond the Third Dimension: Geometry, computer graphics and higher dimensions, Scientific American Library, 1996.
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 7
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 268
- Milan Janjic, Enumerative Formulae for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Ladder Rung Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Doron Zeilberger, The Amazing 3^n Theorem and its even more Amazing Proof [Discovered by Xavier G. Viennot and his École Bordelaise gang], arXiv:1208.2258, 2012.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to Benford's law
Cf.
A008776 (2*a(n), and first differences).
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
-
a000244 = (3 ^) -- Reinhard Zumkeller, Nov 14 2011
a000244_list = iterate (* 3) 1 -- Reinhard Zumkeller, Apr 04 2012
-
[ 3^n : n in [0..30] ]; // Wesley Ivan Hurt, Jul 04 2014
-
A000244 := n->3^n; [ seq(3^n, n=0..50) ];
A000244:=-1/(-1+3*z); # Simon Plouffe in his 1992 dissertation.
-
Table[3^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
3^Range[0, 30] (* Wesley Ivan Hurt, Jul 04 2014 *)
LinearRecurrence[{3}, {1}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
NestList[3#&,1,30] (* Harvey P. Dale, Feb 20 2020 *)
-
makelist(3^n, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
-
A000244(n) = 3^n \\ Michael B. Porter, Nov 03 2009
-
def A000244(n): return 3**n # Chai Wah Wu, Nov 10 2022
-
val powersOf3: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 3)
(0 to 26).map(powersOf3()) // _Alonso del Arte, May 03 2020
A247936
Riordan array ((1-2x)/(1-3x), 2x).
Original entry on oeis.org
1, 1, 2, 3, 2, 4, 9, 6, 4, 8, 27, 18, 12, 8, 16, 81, 54, 36, 24, 16, 32, 243, 162, 108, 72, 48, 32, 64, 729, 486, 324, 216, 144, 96, 64, 128, 2187, 1458, 972, 648, 432, 288, 192, 128, 256, 6561, 4374, 2916, 1944, 1296, 864, 576, 384, 256, 512, 19683, 13122
Offset: 0
Triangle begins:
1
1, 2
3, 2, 4
9, 6, 4, 8
27, 18, 12, 8, 16
81, 54, 36, 24, 16, 32
243, 162, 108, 72, 48, 32, 64
Production matrix begins:
1, 2
1, 0, 2
1, 0, 0, 2
1, 0, 0, 0, 2
1, 0, 0, 0, 0, 2
1, 0, 0, 0, 0, 0, 2
1, 0, 0, 0, 0, 0, 0, 2
Showing 1-3 of 3 results.
Comments