A223094
Number of foldings of n labeled stamps in which leaf n is inwards.
Original entry on oeis.org
0, 0, 2, 6, 26, 78, 288, 888, 3130, 9850, 34112, 108998, 374636, 1211046, 4148816, 13533796, 46304730, 152153758, 520434552, 1720325302, 5885686496, 19552190624, 66927118548, 223264746520, 764725528072, 2560239468774, 8775478294368, 29470844083770
Offset: 1
A223095
Number of foldings of n labeled stamps in which both end leaves are inwards.
Original entry on oeis.org
0, 0, 0, 2, 10, 40, 156, 546, 1986, 6716, 23742, 79472, 277178, 925588, 3205896, 10711486, 36963722, 123712788, 426075994, 1429030624, 4916833424, 16526958144, 56840484232, 191466923584, 658460090994, 2222507917328, 7644360501390, 25850724646008, 88938175307354
Offset: 1
A227167
The number of meandering curves of order n.
Original entry on oeis.org
1, 1, 6, 8, 50, 72, 462, 696, 4536, 7030, 46310, 73188, 485914, 778946, 5202690, 8430992, 56579196, 92470194, 622945970, 1025114180, 6927964218, 11465054942, 77692142980, 129180293184, 877395996200, 1464716085664, 9968202968958, 16698145444260, 113837957337750, 191264779292430
Offset: 1
- A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
- Jean-François Alcover, Table of n, a(n) for n = 1..45
- J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
- W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
- A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
A330269
The number of semi-meanders with n top arches and concentric arches within the starting arch or a starting arch with length one.
Original entry on oeis.org
1, 1, 2, 4, 8, 18, 42, 108, 282, 786, 2192, 6402, 18600, 55978, 167256, 514102, 1567976, 4896164, 15170630, 47957260, 150468678, 480371736, 1522649458, 4900568718, 15665593150, 50761432998, 163431901126, 532624603680, 1725349278270, 5650796083020, 18401781369182
Offset: 1
For n = 5, a(5) = 8:
/\ /\
//\\ /\ / \ /\
///\\\ /\ /\ / \ / /\\ /\ //\\
/\////\\\\, /\//\\//\\, /\/\//\/\\, /\//\//\\\, //\\///\\\,
/\
/\ //\\ starting arch
/\ /\ //\\ /\ ///\\\ (1) (2) (3) (4)
//\\//\\/\, ///\\\//\\, ////\\\\/\, 4 + 2 + 1 + 1 = 8.
A001416
Number of ways of folding a 3 X n strip of stamps.
Original entry on oeis.org
1, 6, 60, 1368, 15552, 201240, 2016432, 21582624, 201060768, 1944012744, 17257455960, 156760071600, 1346073913440, 11734199738820, 98420246759688
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Dickau, Stamp Folding, 2010.
- Hunter Hogan, mapFolding: A computational framework for enumerating distinct folding patterns of rectangular maps, GitHub repository, (2025).
- W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80.
- Eric Weisstein's World of Mathematics, Map Folding.
- Index entries for sequences obtained by enumerating foldings
Comments