Original entry on oeis.org
1, 2, 3, 15, 45, 540, 3402, 96228, 1299078, 85739148, 2507870079, 383704122087, 24487299427734, 8645900336407620, 1209640056157393380, 982320774834892454820, 302358334494179897593596, 563293577162657149216869348
Offset: 1
-
Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
A203432:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor((k+1)/2)-Floor((j+1)/2): j in [0..k-1]]) : k in [1..n-1]])/Barnes(n) >;
[A203432(n): n in [1..25]]; // G. C. Greubel, Sep 20 2023
-
f[j_]:= j + Floor[j/2]; z = 20;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i,n}]
Table[v[n], {n,z}] (* A203430 *)
Table[v[n+1]/v[n], {n,z}] (* A203431 *)
Table[v[n]/d[n], {n,z}] (* this sequence *)
-
def barnes(n): return product(factorial(j) for j in range(n))
def A203432(n): return product(product(k-j+((k+1)//2)-((j+1)//2) for j in range(k)) for k in range(1,n))/barnes(n)
[A203432(n) for n in range(1,31)] # G. C. Greubel, Sep 20 2023
A336497
Numbers that cannot be written as a product of superfactorials A000178.
Original entry on oeis.org
3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 22: {1,5} 39: {2,6}
5: {3} 23: {9} 40: {1,1,1,3}
6: {1,2} 25: {3,3} 41: {13}
7: {4} 26: {1,6} 42: {1,2,4}
9: {2,2} 27: {2,2,2} 43: {14}
10: {1,3} 28: {1,1,4} 44: {1,1,5}
11: {5} 29: {10} 45: {2,2,3}
13: {6} 30: {1,2,3} 46: {1,9}
14: {1,4} 31: {11} 47: {15}
15: {2,3} 33: {2,5} 49: {4,4}
17: {7} 34: {1,7} 50: {1,3,3}
18: {1,2,2} 35: {3,4} 51: {2,7}
19: {8} 36: {1,1,2,2} 52: {1,1,6}
20: {1,1,3} 37: {12} 53: {16}
21: {2,4} 38: {1,8} 54: {1,2,2,2}
A006939 lists superprimorials or Chernoff numbers.
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.
Cf.
A000142,
A000720,
A007489,
A011371,
A022559,
A022915,
A027423,
A034878,
A034876,
A076954,
A115627,
A294068.
-
supfac[n_]:=Product[k!,{k,n}];
facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]
A349081
Numbers k for which there exist two integers m with 1 <= m_1 < m_2 <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.
Original entry on oeis.org
8, 14, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 574, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872, 4048, 4232, 4416, 4608, 4800, 5000
Offset: 1
For k = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For k = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For k = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
-
Do[j=0;l=1;g=BarnesG[k+2];While[j<2&&l<=k,If[IntegerQ@Sqrt[g/l!],j++];l++];If[j==2,Print@k],{k,5000}] (* Giorgos Kalogeropoulos, Dec 02 2021 *)
-
sf(n) = prod(k=2, n, k!); \\ A000178
isok(m) = if (!(m%2), my(s=sf(m)); #select(issquare, vector(4, k, s/(m/2+k-2)!), 1) == 2); \\ Michel Marcus, Dec 04 2021
Original entry on oeis.org
1, 1, 3, 6, 45, 189, 3402, 30618, 1299078, 25332021, 2507870079, 106698472452, 24487299427734, 2283997201168644, 1209640056157393380, 248218139523497121576, 302358334494179897593596, 136861610819571430116630660
Offset: 1
-
Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
f:= func< k | (&*[k+1-j+Floor((k+2)/2)-Floor((j+1)/2): j in [1..k]]) >;
[1] cat [(&*[f(k): k in [1..n-1]])/Barnes(n): n in [2..20]]; // G. C. Greubel, Sep 19 2023
-
f[j_]:= j + Floor[(j+1)/2]; z = 20;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i,n}]
Table[v[n], {n,z}] (* A203433 *)
Table[v[n+1]/v[n], {n,z}] (* A014402 *)
Table[v[n]/d[n], {n,z}] (* A203434 *)
-
def barnes(n): return product(factorial(j) for j in range(n))
def f(k): return product(k-j+(k//2)-(j//2) for j in range(k))
[product(f(k) for k in range(1, n) )//barnes(n) for n in range(1,31)] # G. C. Greubel, Sep 19 2023
Original entry on oeis.org
1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 1
-
[(&*[Binomial(2*n-k,k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
-
(* First program *)
f[j_]:= j; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i,n}]
Table[v[n], {n,z}] (* A093883 *)
Table[v[n+1]/v[n], {n,z-1}] (* A006963 *)
Table[v[n]/d[n], {n,20}] (* A203469 *)
(* Second program *)
Table[Product[Binomial[2*n-j,j], {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
-
[product(binomial(2*n-j,j) for j in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
Original entry on oeis.org
1, 7, 252, 41580, 29729700, 89278289100, 1104908105901600, 55674109640169820800, 11329124570678156834592000, 9258047307912482983660236480000, 30262334718212007877669234596364800000
Offset: 1
-
[(&*[ Binomial(2*j+3, j+4): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 27 2023
-
(* First program *)
f[j_]:= j+2; z=16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}];
d[n_]:= Product[(i-1)!, {i,n}] (* A000178(n-1) *)
Table[v[n], {n,z}] (* A203472 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203473 *)
Table[v[n]/d[n], {n,20}] (* A203474 *)
(* Second program *)
Table[Product[Binomial[2*j+3, j+4], {j,n}], {n,20}] (* G. C. Greubel, Aug 27 2023 *)
-
[product( binomial(2*j+5,j+5) for j in range(n) ) for n in range(1,20)] # G. C. Greubel, Aug 27 2023
Original entry on oeis.org
1, 3, 84, 273000, 3046699656000, 5996663814749677445376000, 160771799453017261771769947549079938007040000, 6351968589735888467306807912855132014808202373395298410963148996608000000
Offset: 1
-
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;
[A203510(n): n in [1..13]]; // G. C. Greubel, Feb 24 2024
-
f[j_] := j!; z = 10;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203482 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203483 *)
Table[v[n]/d[n], {n, 1, 10}] (* this sequence *)
Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* Vaclav Kotesovec, Nov 20 2023 *)
-
def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1,j)) for j in range(1,n+1))/BarnesG(n+1)
[A203510(n) for n in range(1,14)] # G. C. Greubel, Feb 24 2024
Original entry on oeis.org
1, 3, 30, 1680, 900900, 9535125600, 4122929827336320, 161481256755920962660800, 1289130207153926967849156327590400, 4850265693548396005370498087328884780717568000, 20141097979706537636828034511787661382412368790843921121216000
Offset: 1
-
f[j_] := Fibonacci[j + 1]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203518 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203519 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203520 *)
Original entry on oeis.org
1, 5, 140, 25200, 55036800, 951035904000, 222618484408320000, 440079343769868042240000, 12254449406615745504215040000000, 7909254579604123100510930935480320000000, 48073937540175558516708030362614204937011200000000
Offset: 1
-
f[j_] := Prime[j]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203521 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203522 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203523 *)
Original entry on oeis.org
1, 8, 480, 322560, 1857945600, 137339338752000, 90498933234597888000, 806410654352196092559360000, 151104996166246050391298219704320000, 278316545034703677313682486677538340864000000
Offset: 1
-
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203524 *)
Table[v[n + 1]/(8 v[n]), {n, 1, z - 1}] (* A203525 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203526 *)
Comments