cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 285 results. Next

A203432 a(n) = A203430(n)/A000178(n) where A000178=(superfactorials).

Original entry on oeis.org

1, 2, 3, 15, 45, 540, 3402, 96228, 1299078, 85739148, 2507870079, 383704122087, 24487299427734, 8645900336407620, 1209640056157393380, 982320774834892454820, 302358334494179897593596, 563293577162657149216869348
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
    A203432:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor((k+1)/2)-Floor((j+1)/2): j in [0..k-1]]) : k in [1..n-1]])/Barnes(n) >;
    [A203432(n): n in [1..25]]; // G. C. Greubel, Sep 20 2023
    
  • Mathematica
    f[j_]:= j + Floor[j/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203430 *)
    Table[v[n+1]/v[n], {n,z}]      (* A203431 *)
    Table[v[n]/d[n], {n,z}]        (* this sequence *)
  • SageMath
    def barnes(n): return product(factorial(j) for j in range(n))
    def A203432(n): return product(product(k-j+((k+1)//2)-((j+1)//2) for j in range(k)) for k in range(1,n))/barnes(n)
    [A203432(n) for n in range(1,31)] # G. C. Greubel, Sep 20 2023

A336497 Numbers that cannot be written as a product of superfactorials A000178.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A336426 in having 360.

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}        22: {1,5}        39: {2,6}
     5: {3}        23: {9}          40: {1,1,1,3}
     6: {1,2}      25: {3,3}        41: {13}
     7: {4}        26: {1,6}        42: {1,2,4}
     9: {2,2}      27: {2,2,2}      43: {14}
    10: {1,3}      28: {1,1,4}      44: {1,1,5}
    11: {5}        29: {10}         45: {2,2,3}
    13: {6}        30: {1,2,3}      46: {1,9}
    14: {1,4}      31: {11}         47: {15}
    15: {2,3}      33: {2,5}        49: {4,4}
    17: {7}        34: {1,7}        50: {1,3,3}
    18: {1,2,2}    35: {3,4}        51: {2,7}
    19: {8}        36: {1,1,2,2}    52: {1,1,6}
    20: {1,1,3}    37: {12}         53: {16}
    21: {2,4}      38: {1,8}        54: {1,2,2,2}
		

Crossrefs

A093373 is the version for factorials, with complement A001013.
A336426 is the version for superprimorials, with complement A181818.
A336496 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178(n).
A174605 is the maximum prime multiplicity in A000178(n).
A303279 counts prime factors (with multiplicity) of superprimorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[100],facsusing[Rest[Array[supfac,30]],#]=={}&]

A349081 Numbers k for which there exist two integers m with 1 <= m_1 < m_2 <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

8, 14, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 574, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872, 4048, 4232, 4416, 4608, 4800, 5000
Offset: 1

Views

Author

Bernard Schott, Dec 01 2021

Keywords

Comments

This sequence is the union of three infinite and disjoint subsequences:
-> Numbers k = 8t^2 > 0 (A139098); for these numbers, m_1 = k/2 - 1 = 4t^2-1 < m_2 = k/2 = 4t^2 (see example for k = 8).
-> Numbers k = 8t*(t+1) (A035008); for these numbers, m_1 = k/2 = 4t(t+1) < m_2 = k/2 + 1 = (2t+1)^2 (see example for k = 16).
-> Even numbers of the form 2t^2-4, t>1 in A001541 (A349766); for these numbers, m_1 = k/2 + 1 = t^2 - 1 < m_2 = k/2 + 2 = t^2 (see example for k = 14).
See A348692 for further information.

Examples

			For k = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For k = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For k = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
		

Crossrefs

Subsequence of A349079.

Programs

  • Mathematica
    Do[j=0;l=1;g=BarnesG[k+2];While[j<2&&l<=k,If[IntegerQ@Sqrt[g/l!],j++];l++];If[j==2,Print@k],{k,5000}] (* Giorgos Kalogeropoulos, Dec 02 2021 *)
  • PARI
    sf(n) = prod(k=2, n, k!); \\ A000178
    isok(m) = if (!(m%2), my(s=sf(m)); #select(issquare, vector(4, k, s/(m/2+k-2)!), 1) == 2); \\ Michel Marcus, Dec 04 2021

A203434 a(n) = A203433(n)/A000178(n) where A000178=(superfactorials).

Original entry on oeis.org

1, 1, 3, 6, 45, 189, 3402, 30618, 1299078, 25332021, 2507870079, 106698472452, 24487299427734, 2283997201168644, 1209640056157393380, 248218139523497121576, 302358334494179897593596, 136861610819571430116630660
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
    f:= func< k | (&*[k+1-j+Floor((k+2)/2)-Floor((j+1)/2): j in [1..k]]) >;
    [1] cat [(&*[f(k): k in [1..n-1]])/Barnes(n): n in [2..20]]; // G. C. Greubel, Sep 19 2023
    
  • Mathematica
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203433 *)
    Table[v[n+1]/v[n], {n,z}]      (* A014402 *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
  • SageMath
    def barnes(n): return product(factorial(j) for j in range(n))
    def f(k): return product(k-j+(k//2)-(j//2) for j in range(k))
    [product(f(k) for k in range(1, n) )//barnes(n) for n in range(1,31)] # G. C. Greubel, Sep 19 2023

A203469 a(n) = v(n)/A000178(n), v = A093883 and A000178 = (superfactorials).

Original entry on oeis.org

1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[Binomial(2*n-k,k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j; z = 16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]           (* A093883 *)
    Table[v[n+1]/v[n], {n,z-1}]  (* A006963 *)
    Table[v[n]/d[n], {n,20}]     (* A203469 *)
    (* Second program *)
    Table[Product[Binomial[2*n-j,j], {j,n}], {n,20}] (* G. C. Greubel, Aug 29 2023 *)
  • SageMath
    [product(binomial(2*n-j,j) for j in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023

Formula

a(n) = Product_{i=1..n} binomial(2n-i,i). - Enrique Pérez Herrero, Feb 20 2013
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = (2^n/sqrt(Pi))^n*BarnesG(n+3/2)/(BarnesG(n+2)*BarnesG(3/2)).
a(n) = (n!/2^(n-1))*Product_{j=1..n-1} Catalan(j). (End)
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^(n/2 + 1/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 26 2023

A203474 a(n) = A203472(n) / A000178(n-1), where A000178 are the superfactorials.

Original entry on oeis.org

1, 7, 252, 41580, 29729700, 89278289100, 1104908105901600, 55674109640169820800, 11329124570678156834592000, 9258047307912482983660236480000, 30262334718212007877669234596364800000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[ Binomial(2*j+3, j+4): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 27 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j+2; z=16;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}];
    d[n_]:= Product[(i-1)!, {i,n}]  (* A000178(n-1) *)
    Table[v[n], {n,z}]              (* A203472 *)
    Table[v[n+1]/v[n], {n,z-1}]     (* A203473 *)
    Table[v[n]/d[n], {n,20}]        (* A203474 *)
    (* Second program *)
    Table[Product[Binomial[2*j+3, j+4], {j,n}], {n,20}] (* G. C. Greubel, Aug 27 2023 *)
  • SageMath
    [product( binomial(2*j+5,j+5) for j in range(n) ) for n in range(1,20)] # G. C. Greubel, Aug 27 2023

Formula

a(n) ~ 3*A^(3/2) * 2^(n^2 + 4*n + 185/24) * exp(n/2 - 1/8) / (Pi^(n/2 + 3/2) * n^(n/2 + 59/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 09 2021
From G. C. Greubel, Aug 27 2023: (Start)
a(n) = Product_{j=1..n} binomial(2*j+3, j+4).
a(n) = (18*2^(n+2)^2/Pi^(n/2))*BarnesG(n+3)*BarnesG(n+7/2)/( BarnesG(n +1)*BarnesG(n+6)*BarnesG(7/2)). (End)

Extensions

Definition corrected by Vaclav Kotesovec, Apr 09 2021

A203510 a(n) = A203482(n) / A000178(n).

Original entry on oeis.org

1, 3, 84, 273000, 3046699656000, 5996663814749677445376000, 160771799453017261771769947549079938007040000, 6351968589735888467306807912855132014808202373395298410963148996608000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term of the sequence is an integer.

Crossrefs

Programs

  • Magma
    BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
    A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;
    [A203510(n): n in [1..13]]; // G. C. Greubel, Feb 24 2024
    
  • Mathematica
    f[j_] := j!; z = 10;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]  (* A000178 *)
    Table[v[n], {n, 1, z}]                 (* A203482 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]    (* A203483 *)
    Table[v[n]/d[n], {n, 1, 10}]           (* this sequence *)
    Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* Vaclav Kotesovec, Nov 20 2023 *)
  • SageMath
    def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
    def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1,j)) for j in range(1,n+1))/BarnesG(n+1)
    [A203510(n) for n in range(1,14)] # G. C. Greubel, Feb 24 2024

Formula

a(n) ~ c * A * n^(n^3/3 - n^2/4 - 7*n/12 + 17/24) * (2*Pi)^(n^2/4 - 3*n/4) / exp(4*n^3/9 - 7*n^2/8 - n + 1/12), where A is the Glaisher-Kinkelin constant A074962 and c = 0.488888619502150098591650327163991582267254151817880403495924251381414248582... (from A203482). - Vaclav Kotesovec, Nov 20 2023

A203520 v(n)/A000178(n); v=A203518 and A000178=(superfactorials).

Original entry on oeis.org

1, 3, 30, 1680, 900900, 9535125600, 4122929827336320, 161481256755920962660800, 1289130207153926967849156327590400, 4850265693548396005370498087328884780717568000, 20141097979706537636828034511787661382412368790843921121216000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term of A203520 is an integer.

Crossrefs

Programs

  • Mathematica
    f[j_] := Fibonacci[j + 1]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
    Table[v[n], {n, 1, z}]                (* A203518 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203519 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203520 *)

A203523 v(n)/A000178(n); v=A203521 and A000178=(superfactorials).

Original entry on oeis.org

1, 5, 140, 25200, 55036800, 951035904000, 222618484408320000, 440079343769868042240000, 12254449406615745504215040000000, 7909254579604123100510930935480320000000, 48073937540175558516708030362614204937011200000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term of A203523 is an integer.

Crossrefs

Programs

  • Mathematica
    f[j_] := Prime[j]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
    Table[v[n], {n, 1, z}]                (* A203521 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203522 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203523 *)

A203526 v(n)/A000178(n); v=A203524 and A000178=(superfactorials).

Original entry on oeis.org

1, 8, 480, 322560, 1857945600, 137339338752000, 90498933234597888000, 806410654352196092559360000, 151104996166246050391298219704320000, 278316545034703677313682486677538340864000000
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

It is conjectured that every term of A203526 is an integer.

Crossrefs

Programs

  • Mathematica
    f[j_] := Prime[j + 1]; z = 17;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]    (* A000178 *)
    Table[v[n], {n, 1, z}]                   (* A203524 *)
    Table[v[n + 1]/(8 v[n]), {n, 1, z - 1}]  (* A203525 *)
    Table[v[n]/d[n], {n, 1, 20}]             (* A203526 *)
Previous Showing 11-20 of 285 results. Next