cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A336686 Decimal expansion of Sum_{k>=0} 1/(k!)!.

Original entry on oeis.org

2, 5, 0, 1, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 0, 5, 0, 0, 6, 2, 6, 4, 5, 9, 9, 8, 5, 0, 0, 7, 2, 3, 7, 9, 3, 7, 6, 0, 2, 1, 9, 3, 6, 9, 0, 0, 6, 0, 6, 9, 0, 2, 1, 3, 6, 1, 4, 9, 9, 1, 4, 9, 6, 1, 1, 6, 8, 6, 2, 4, 1, 8, 1, 7, 8, 9, 1, 9, 8, 9, 9, 3, 3, 9, 4, 3, 7, 4, 1, 5, 7, 4, 4, 1
Offset: 1

Views

Author

Daniel Hoyt, Nov 20 2020

Keywords

Comments

The sum has 18 8's in a row within the first 23 decimal places.
1801/720 approximates this constant to 23 significant digits.

Examples

			2.5013888888888888888888905006...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(k!)!, k=0..infinity), 112);  # Alois P. Heinz, Nov 20 2020
  • Mathematica
    RealDigits[Sum[1/(k!)!, {k, 0, 4}], 10, 100][[1]] (* Amiram Eldar, Nov 21 2020 *)
  • PARI
    suminf(k=0, 1/(k!)!)

A245087 Largest number such that 2^a(n) is a divisor of (n!)!.

Original entry on oeis.org

0, 0, 1, 4, 22, 116, 716, 5034, 40314, 362874, 3628789, 39916793, 479001588, 6227020788, 87178291188, 1307674367982, 20922789887982, 355687428095978, 6402373705727977, 121645100408831983, 2432902008176639978, 51090942171709439975, 1124000727777607679972
Offset: 0

Views

Author

Stanislav Sykora, Jul 15 2014

Keywords

Comments

Also the number of trailing zeros in the binary expansion of (n!)!.

Examples

			a(4)=22 because (4!)!=620448401733239439360000 is divisible by 2^22 but not by 2^23.
		

Crossrefs

Cf. A000120 (Hamming weights), A000142, A000197, A011371.

Programs

  • PARI
    a(n) = n!-hammingweight(n!)

Formula

a(n) = n! - Hw(n!), Hw being the Hamming weight function.
a(n) = A011371(A000142(n)).

A301861 a(n) is the sum of the decimal digits of (n!)!.

Original entry on oeis.org

1, 1, 2, 9, 81, 783, 7164, 69048, 711009, 7961040, 95935761, 1242436185, 17235507996
Offset: 0

Views

Author

Jon E. Schoenfield, Mar 28 2018

Keywords

Comments

Presumably, lim_{n->oo} a(n)/A008906(n!) = 9/2.

Examples

			a(0) = digitsum((0!)!) = digitsum(1!) = digitsum(1) = 1.
a(1) = digitsum((1!)!) = digitsum(1!) = digitsum(1) = 1.
a(2) = digitsum((2!)!) = digitsum(2!) = digitsum(2) = 2.
a(3) = digitsum((3!)!) = digitsum(6!) = digitsum(720) = 7+2 = 9.
a(4) = digitsum((4!)!) = digitsum(24!) = digitsum(620448401733239439360000) = 6+2+0+4+4+8+4+0+1+7+3+3+2+3+9+4+3+9+3+6+0+0+0+0 = 81.
		

Crossrefs

Cf. A000142 (factorial numbers), A000197 ((n!)!), A004152 (sum of digits of n!), A007953 (sum of digits of n), A008906 (number of digits in n! excluding trailing zeros), A027868 (number of trailing zeros in n!), A034886 (number of digits in n!), A063979 (number of digits in (n!)!).

Programs

  • Magma
    [&+Intseq(Factorial(Factorial(n))): n in [0..10]]; // Vincenzo Librandi, Mar 29 2018
    
  • Maple
    a:= n-> add(i, i=convert(n!!, base, 10)):
    seq(a(n), n=0..8);  # Alois P. Heinz, Oct 27 2021
  • Mathematica
    Table[Plus@@IntegerDigits[(n!)!], {n, 0, 10}] (* Vincenzo Librandi, Mar 29 2018 *)
  • PARI
    a(n) = sumdigits(n!!); \\ Michel Marcus, Mar 28 2018
    
  • Python
    from math import factorial
    def A301861(n):
        return sum(int(d) for d in str(factorial(factorial(n)))) # Chai Wah Wu, Mar 31 2018
    # faster program for larger values of n
    from gmpy2 import mpz, digits, fac
    def A301861(n): return int(sum(mpz(d) for d in digits(fac(fac(n))))) # Chai Wah Wu, Oct 24 2021

Formula

a(n) = A007953(A000197(n)). - Michel Marcus, Mar 28 2018
a(n) = A004152(A000142(n)). - Altug Alkan, Mar 28 2018

Extensions

a(11) from Chai Wah Wu, Mar 31 2018
a(12) from Chai Wah Wu, Apr 01 2018

A348651 Number of ones in the binary expansion of (n!)!.

Original entry on oeis.org

1, 1, 1, 4, 29, 293, 2566, 24844, 259437, 2908263, 35102629, 455204360, 6321171774
Offset: 0

Views

Author

Alois P. Heinz, Oct 27 2021

Keywords

Examples

			a(3) = 4 because (3!)! = 6! = 720 = 1011010000_2 which has 4 ones.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(i, i=Bits[Split](n!!)):
    seq(a(n), n=0..10);
  • Mathematica
    a[n_] := DigitCount[(n!)!, 2, 1]; Array[a, 10, 0] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    a(n) = hammingweight((n!)!); \\ Michel Marcus, Oct 29 2021
  • Python
    from gmpy2 import fac, popcount
    def A348651(n): return popcount(fac(fac(n))) # Chai Wah Wu, Oct 28 2021
    

Formula

a(n) = A000120(A000197(n)).

Extensions

a(11)-a(12) from Chai Wah Wu, Oct 28 2021

A033187 a(n) = (n!)!/n!.

Original entry on oeis.org

1, 1, 1, 120, 25852016738884976640000
Offset: 0

Views

Author

Ken Alverson (KenA(AT)tso.cin.ix.ne)

Keywords

Comments

The next two terms have 197 and 1744 decimal digits, respectively.
a(n) gives the number of different ways in which a table of permutations for n objects can be arranged when one of them is fixed at the same place. Also: some of the first terms in this sequence belong to A010050. - R. J. Cano, Jan 23 2013

Crossrefs

Programs

Formula

a(n) = (n!-1)!.
a(n) = A000197(n)/n!.

Extensions

Corrections made by Eric M. Schmidt, Jan 23 2013

A078670 Number of times n appears among the decimal digits of (n!)!.

Original entry on oeis.org

1, 1, 0, 4, 21, 169, 1504, 15755, 177333, 213789
Offset: 1

Views

Author

Jason Earls, Dec 16 2002

Keywords

Examples

			a(4)=4 because 4 appears four times in (4!)! = 620448401733239439360000.
		

Crossrefs

Cf. A000197.

Programs

  • Mathematica
    Table[Count[Partition[IntegerDigits[(n!)!],IntegerLength[n],1], IntegerDigits[ n]],{n,10}] (* Harvey P. Dale, May 19 2014 *)
    Table[SequenceCount[IntegerDigits[(n!)!],IntegerDigits[n]],{n,10}] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Aug 08 2016 *)
  • PARI
    {mdcp(d,n)=local(a, c=0,L); L=length(Str(d)); if(L>1,a=2,a=1); while(n>0,if(n%(10^a)==d,n=floor(n/10); c++,n=floor(n/10); )); c } for(n=1,10,print1(mdcp(n,n!!)","))

Extensions

Added a(9) and a(10). - Ryan Leonel (ryan.leonel(AT)gmail.com), Oct 03 2008

A102046 Smallest positive integer greater than a(n - 1) consistent with the condition that n is a member of the sequence if and only if a(n) is congruent to (n!)!.

Original entry on oeis.org

1, 1, 2, 6, 7, 8, 720, 721, 722, 723, 724, 726, 727, 728, 729, 780, 781, 782, 783, 784, 785, 786, 787, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799
Offset: 0

Views

Author

Michael Joseph Halm, Feb 12 2005

Keywords

Comments

The sequence is related to the fake even and fake odd sequences and also the factorial and double factorial sequences, so seems in the short run linear but in the long run exponential.

Examples

			a(6) = 720 because (3!)! = 6! = 720
		

Crossrefs

Formula

a(a(n)) = (n!)!

Extensions

The definition does not match the data. How was this sequence generated? - N. J. A. Sloane, Feb 21 2021
Previous Showing 11-17 of 17 results.