cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A065501 Number of conjugacy classes in the group SL(2,Z_n) (see A000056).

Original entry on oeis.org

1, 3, 7, 10, 9, 21, 11, 30, 25, 27, 15, 70, 17, 33, 63, 76, 21, 75, 23, 90, 77, 45, 27, 210, 49, 51, 79, 110, 33, 189, 35, 168, 105, 63, 99, 250, 41, 69, 119, 270, 45, 231, 47, 150, 225, 81, 51, 532, 81, 147, 147, 170, 57, 237, 135, 330, 161, 99, 63, 630, 65, 105, 275, 352, 153
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001

Keywords

Crossrefs

Programs

  • Magma
    [Nclasses(SpecialLinearGroup(2,ResidueClassRing(n))) : n in [2..50]]; // Robin Visser, Aug 06 2023

Formula

For an odd prime p : a(p) = p + 4. - Robin Visser, Aug 06 2023

Extensions

a(23) corrected and more terms from Robin Visser, Aug 06 2023

A181107 Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.

Original entry on oeis.org

1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1

Views

Author

Erdos Pal, Oct 03 2010

Keywords

Comments

The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
T(prime(n),1) = A127917(n).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n*A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.

Examples

			From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
    1;
   10,   6;
   33,  24,  24;
   88,  48,  72,  48;
  145, 120, 120, 120, 120;
  330, 144, 240, 198, 240, 144;
  385, 336, 336, 336, 336, 336, 336;
  736, 384, 576, 384, 672, 384, 576, 384;
  945, 648, 648, 864, 648, 648, 864, 648, 648;
  ... (End)
		

Crossrefs

Column k=0 is A020478.
Column k=1 is A000056.
Row sums are A005353.

Programs

  • Other
      (* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
    				
  • PARI
    S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
    T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
    for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018

Formula

T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018

Extensions

Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018

A327568 Exponent of the group GL(2, Z_n).

Original entry on oeis.org

1, 6, 24, 12, 120, 24, 336, 24, 72, 120, 1320, 24, 2184, 336, 120, 48, 4896, 72, 6840, 120, 336, 1320, 12144, 24, 600, 2184, 216, 336, 24360, 120, 29760, 96, 1320, 4896, 1680, 72, 50616, 6840, 2184, 120, 68880, 336, 79464, 1320, 360, 12144
Offset: 1

Views

Author

Jianing Song, Sep 17 2019

Keywords

Comments

The exponent of a finite group G is the least positive integer k such that x^k = e for all x in G, where e is the identity of the group. That is to say, the exponent of a finite group G is the LCM of the orders of elements in G. Of course, the exponent divides the order of the group.

Examples

			GL(2, Z_2) is isomorphic to S_3, which has 1 identity element, 3 elements with order 2 and 2 elements with order 3, so a(2) = lcm(1, 2, 3) = 6.
		

Crossrefs

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++; N=N*M); k}
    a(n)={my(m=1); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=lcm(m, MatOrder(M))))))); m} \\ Following Andrew Howroyd's program for A316565

Formula

If gcd(m, n) = 1 then a(m*n) = lcm(a(m), a(n)).
Conjecture: a(p^e) = (p^2-1)*p^e for primes p. If this is true, then 24 divides a(n) for n > 2.

A020479 Number of noninvertible 2 X 2 matrices over Z/nZ (determinant is a divisor of 0).

Original entry on oeis.org

10, 33, 160, 145, 1008, 385, 2560, 2673, 7120, 1441, 16128, 2353, 26320, 27585, 40960, 5185, 81648, 7201, 113920, 97713, 155056, 12673, 258048, 90625, 299728, 216513, 421120, 25201, 671760, 30721, 655360, 552321, 866320, 532945, 1306368, 51985
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A000252.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^2*(p + 1)*p^(4*e - 3); a[n_] := n^4 - Times @@ f @@@ FactorInteger[n]; Array[a, 36, 2] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e=f[,2]); n^4 - prod(k = 1, #p, (p[k] - 1)^2*(p[k] + 1)*p[k]^(4*e[k] - 3));} \\ Amiram Eldar, Aug 03 2024

Formula

a(n) seems to be divisible by n. - Ralf Stephan, Sep 01 2003 [This is true and can be easily proven from the formula below and from the multiplicative formula for A000252(n). - Amiram Eldar, Aug 03 2024]
a(n) = n^4 - A000252(n). - T. D. Noe, Jan 16 2006

A065499 Noninvertible 3 X 3 matrices over Z_n.

Original entry on oeis.org

0, 344, 8451, 176128, 465125, 8190720, 6569479, 90177536, 166341033, 750016000, 233671691, 4193648640, 878081581, 14985313280, 21730143375, 46170898432, 7384597649, 161217941760, 17874835219, 384008192000, 414816720885
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := (g = First[ Transpose[ FactorInteger[n]]]; n^9*(1 - Apply[ Times, 1 - 1/g] Apply[ Times, 1 - 1/g^2] Apply[ Times, 1 - 1/g^3])); Table[ f[n], {n, 1, 22} ]
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e=f[,2]); n^9 - prod(k = 1, #p, (p[k]-1)*(p[k]^2-1)*(p[k]^3-1)*(p[k]^(9*e[k]-6)));} \\ Amiram Eldar, Aug 03 2024

Formula

a(n) = n^9 - A064767(n) = n^9 - n^9 * Product (1-1/p^3)*(1-1/p^2)*(1-1/p) where the product is over all the primes p that divide n.

Extensions

More terms from Robert G. Wilson v, Nov 30 2001

A070943 Commuting elements: number of ordered pairs g, h in the group GL(2,Z_n) such that gh = hg.

Original entry on oeis.org

1, 18, 384, 1344, 11520, 6912, 96768, 92160, 303264, 207360, 1584000, 516096, 4402944, 1741824, 4423680, 6094848, 22560768, 5458752, 44323200, 15482880, 37158912, 28512000, 141064704, 35389440, 186000000, 79252992, 226748160, 130056192, 572947200, 79626240
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 12 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^4*DivisorSigma[1, n]*EulerPhi[n]*Product[(1-1/p^2)*(1-1/p), {p, FactorInteger[n][[All, 1]]}]; a[1]=1; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 02 2013, after Eric M. Schmidt *)
  • Sage
    def A070943(n) : return Integer(n^4 * sigma(n) * euler_phi(n) * prod((1-1/p^2)*(1-1/p) for (p,m) in factor(n))) # Eric M. Schmidt, May 02 2013

Formula

a(n) = A000252(n) * A062354(n).
a(n) = n^4 * Product_{p prime, p|n} (1-1/p^2)*(1-1/p) * sigma(n)*phi(n).
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1)-1) * (p-1)^2 * (p+1) * p^(5*e-4).
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 - 1/p^2 - 2/p^3 + 3/p^4 - 1/p^5) = 0.07103214283... . (End)

Extensions

More terms from Benoit Cloitre, Sep 13 2003
More terms from Eric M. Schmidt, May 02 2013

A085646 Sum of the entries in the character table of the group GL(2,Z_n).

Original entry on oeis.org

1, 5, 24, 52, 120, 120, 336, 496, 654, 600, 1320, 1248, 2184, 1680, 2880
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 11 2003

Keywords

Crossrefs

Formula

For an odd prime p : a(p) = p*(p^2-1).

A086147 Sum of the orders of the elements in the group GL(2,Z_n).

Original entry on oeis.org

1, 13, 219, 367, 4891, 1977, 36085, 9791, 46731, 39133, 479157, 37119, 1289911, 243703, 375219, 305599, 6991319, 299913, 11500123, 667219, 2610657, 3723423, 40035651, 781127, 14928331, 8544673, 11297307, 4540153, 129539703, 2739477, 209881105, 9748415
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 25 2003

Keywords

Crossrefs

Programs

  • GAP
    A086147 := n -> Sum(ConjugacyClasses(GL(2,ZmodnZ(n))), cc->Size(cc) * Order(Representative(cc))); # Eric M. Schmidt, May 18 2013

Formula

a(n) = Sum_{k=1..n} k*A316566(n, k). - Andrew Howroyd, Jul 07 2018

Extensions

Corrected and extended by Eric M. Schmidt, May 18 2013

A229292 Exponent of the group of 2 X 2 invertible matrices over Z/nZ.

Original entry on oeis.org

1, 6, 24, 30, 120, 24, 336, 126, 240, 120, 1320, 120, 2184, 336, 120, 510, 4896, 240, 6840, 120, 336, 1320, 12144, 504, 3120, 2184, 2184, 1680, 24360, 120, 29760, 2046, 1320, 4896, 1680, 240, 50616, 6840, 2184, 2520, 68880, 336, 79464, 1320, 240, 12144
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    ex[p_, s_] := LCM[p(p^(2 s) - 1), p - 1]; ex[1] := 1; ex[n_] := {aux = 1; Do[aux = LCM[aux, ex[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]];Table[ex[n], {n, 1, 111}]
  • PARI
    a(n)=if(n==1,return(1)); my(f=factor(n)); lcm(vector(#f~,i, f[i,1]*lcm((f[i,1]^(2*f[i,2])-1), f[i,1]-1))) \\ Charles R Greathouse IV, Nov 13 2013

Formula

a(p^s) = lcm(p*(p^(2*s) - 1), p - 1); if gcd(m,n)=1 then a(n*m) = lcm(a(n), a(m)).

A327570 a(n) = n*phi(n)^2, phi = A000010.

Original entry on oeis.org

1, 2, 12, 16, 80, 24, 252, 128, 324, 160, 1100, 192, 1872, 504, 960, 1024, 4352, 648, 6156, 1280, 3024, 2200, 11132, 1536, 10000, 3744, 8748, 4032, 22736, 1920, 27900, 8192, 13200, 8704, 20160, 5184, 47952, 12312, 22464, 10240, 65600, 6048, 75852, 17600, 25920, 22264, 99452, 12288
Offset: 1

Views

Author

Jianing Song, Sep 17 2019

Keywords

Comments

a(n) is the order of the group consisting of all upper-triangular (or equivalently, lower-triangular) matrices in GL(2, Z_n). That is to say, a(n) = |G_n|, where G_n = {{{a, b}, {0, d}} : gcd(a, n) = gcd(d, n) = 1}. The group G_n is well-defined because the product of two upper-triangular matrices is again an upper-triangular matrix. For example,{{a, b}, {0, d}} * {{x, y}, {0, z}} = {{a*x, a*y+b*z}, {0, d*z}}.
The exponent of G_n (i.e., the least positive integer k such that x^k = e for all x in G_n) is A174824(n). (Note that {{1, 1}, {0, 1}} is an element with order n and there exists some r such that {{r, 0}, {0, r}} is an element with order psi(n), psi = A002322. It is easy to show that x^lcm(n, psi(n)) = Id = {{1, 0}, {0, 1}} for all x in G_n.)
If only upper-triangular matrices in SL(2, Z_n) are wanted, we get a group of order n*phi(n) = A002618(n) and exponent A174824(n).

Examples

			G_3 = {{{1, 0}, {0, 1}}, {{1, 1}, {0, 1}}, {{1, 2}, {0, 1}}, {{1, 0}, {0, 2}}, {{1, 1}, {0, 2}}, {{1, 2}, {0, 2}}, {{2, 0}, {0, 1}}, {{2, 1}, {0, 1}}, {{2, 2}, {0, 1}}, {{2, 0}, {0, 2}}, {{2, 1}, {0, 2}}, {{2, 2}, {0, 2}}} with order 12, so a(3) = 12.
		

Crossrefs

Programs

  • Mathematica
    Table[n * EulerPhi[n]^2, {n, 1, 100}] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n) = n*eulerphi(n)^2

Formula

Multiplicative with a(p^e) = (p-1)^2*p^(3e-2).
a(n) = A000010(n)*A002618(n).
a(p) = A011379(p-1) for p prime. - Peter Luschny, Sep 17 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/((p-1)^3 * (p^2 + p + 1))) = 1.7394747912949637836019917301710010334604379331855033150372654868327481539... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 - (2*p-1)/p^3) = A065464 / 4 = 0.1070623764... . - Amiram Eldar, Nov 05 2022
Previous Showing 21-30 of 32 results. Next