cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A336665 a(n) = (n!)^2 * [x^n] 1 / BesselJ(0,2*sqrt(x))^n.

Original entry on oeis.org

1, 1, 10, 255, 12196, 939155, 106161756, 16554165495, 3404986723720, 893137635015219, 290965846152033460, 115256679181251696803, 54552992572663333862400, 30406695393635479756804525, 19712738332895648545008815416, 14707436666152282009334357074335
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2020

Keywords

Crossrefs

Main diagonal of A340986.

Programs

  • Mathematica
    Table[(n!)^2 SeriesCoefficient[1/BesselJ[0, 2 Sqrt[x]]^n, {x, 0, n}], {n, 0, 15}]
    A287316[n_, k_] := A287316[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[Binomial[n, j]^2 A287316[n - j, k - 1], {j, 0, n}]]]; b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[(-1)^(j + 1) Binomial[n, j]^2 A287316[j, k] b[n - j, k], {j, 1, n}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 15}]

Formula

a(n) ~ c * d^n * n!^2 / sqrt(n), where d = 3.431031961004073074179854315227049823720211... and c = 0.31156343453490677011135864540173577785263... - Vaclav Kotesovec, May 04 2024

A287315 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0

Views

Author

Peter Luschny, May 29 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,    3]
3: [0, 1,   16,     19]
4: [0, 1,   65,    299,     211]
5: [0, 1,  246,   3156,    7346,    3651]
6: [0, 1,  917,  28722,  160322,  237517,   90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
		

Crossrefs

T(n,n) = A000275(n).
Cf. A192721 (variant), A001044, A287314, A287316.

Programs

  • Maple
    Delta := proc(a, n) local del, A, u;
    A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
    for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
    A287315_row := n -> Delta(A287314_poly(n), n):
    for n from 0 to 7 do A287315_row(n) od;
    A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287315_eulerian(n,x) od;

Formula

Sum_{k=0..n} T(n,k) = A001044(n).

A334412 Number of ordered pairs of permutations of [n] avoiding synchronous double descent pairs.

Original entry on oeis.org

1, 1, 4, 35, 545, 13250, 463899, 22106253, 1375915620, 108386009099, 10540705282001, 1240370638524842, 173704235075714947, 28549174106487593365, 5441843626292088857818, 1190762128123996264128849, 296456799935194225886732961, 83321234634397591315509479058
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2020

Keywords

Examples

			a(3) = (3!)^2 - 1 = 35: only (321,321) does not avoid synchronous double descent pairs among the ordered pairs of permutations of [3].
		

Crossrefs

Column k=0 of A334257.
Cf. A000275 (the same for single descent pairs), A001044.

Programs

  • Maple
    b:= proc(n, u, v, t) option remember; `if`(n=0, 1, add(add(
          b(n-1, sort([u-j, v-i])[], 1), i=1..v)+add(
          b(n-1, sort([u-j, v+i-1])[], 1), i=1..n-v), j=1..u)+add(add(
          b(n-1, sort([u+j-1, v-i])[], 1), i=1..v)+add(`if`(t=0, 0,
          b(n-1, sort([u+j-1, v+i-1])[], 0)), i=1..n-v), j=1..n-u))
        end:
    a:= n-> b(n$3, 1):
    seq(a(n), n=0..21);
  • Mathematica
    nn = 20; a=Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> -1;Map[Select[#, # > 0 &] &,
    Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Flatten (* Geoffrey Critzer, Apr 27 2020 *)

Formula

a(n) <= A001044(n) with equality only for n < 3.

A336606 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) / BesselJ(0,2*sqrt(x)).

Original entry on oeis.org

1, 2, 9, 70, 851, 15246, 384147, 13065354, 578905875, 32440563766, 2243907466283, 187796863841346, 18704441632101337, 2186374265471576090, 296396762529435076953, 46126320892158605384334, 8167358455139620845210003, 1632571811017090501346518086
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[Exp[x]/BesselJ[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
    A000275[0] = 1; A000275[n_] := A000275[n] = -Sum[(-1)^(n - k) Binomial[n, k]^2 A000275[k], {k, 0, n - 1}]; a[n_] := n! Sum[Binomial[n, k] A000275[k]/k!, {k, 0, n}]; Table[a[n], {n, 0, 17}]

Formula

a(n) = n! * Sum_{k=0..n} binomial(n,k) * A000275(k) / k!.

A336608 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(-x) / BesselJ(0,2*sqrt(x)).

Original entry on oeis.org

1, 0, 1, 4, 51, 856, 21435, 725796, 32132499, 1800176176, 124511280723, 10420458131260, 1037868062069113, 121317006426807192, 16446390218708245393, 2559445829942874207804, 453188354421968867989395, 90587738500599611033753184
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[Exp[-x]/BesselJ[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
    A000275[0] = 1; A000275[n_] := A000275[n] = -Sum[(-1)^(n - k) Binomial[n, k]^2 A000275[k], {k, 0, n - 1}]; a[n_] := n! Sum[(-1)^(n - k) Binomial[n, k] A000275[k]/k!, {k, 0, n}]; Table[a[n], {n, 0, 17}]

Formula

a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000275(k) / k!.

A298595 G.f.: Sum_{n>=0} a(n)*x^(2*n)/((2*n)!)^2 = 1/BesselJ(0,x).

Original entry on oeis.org

1, 1, 27, 4275, 2326275, 3260434275, 9824561849025, 56272951734424425, 560476093710119461875, 9074718916938795106861875, 226586114542199918676706160625, 8362768986063791790897266120885625, 440616849129306857329147873116900455625, 32189976281042425371050387695609814928515625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Examples

			1/BesselJ(0,x) = 1 + x^2/(2!)^2 + 27*x^4/(4!)^2 + 4275*x^6/(6!)^2 + 2326275*x^8/(8!)^2 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 13; Table[(CoefficientList[Series[1/BesselJ[0, x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!^2)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 13; Table[(CoefficientList[Series[1/Hypergeometric0F1[1, -x^2/4], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!^2)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = ((2*n)!)^2 * [x^(2*n)] 1/BesselJ(0,x).
a(n) ~ c * Pi * 2^(4*n+3) * n^(4*n+1) / (exp(4*n) * r^(2*n+1)), where r = BesselJZero(0, 1) = A115368 = 2.40482555769... and c = 1 / BesselJ(1, r) = 1.9262348469772531439976485375138638... - Vaclav Kotesovec, May 04 2024

A336609 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 / BesselJ(0,2*sqrt(x)) - 1).

Original entry on oeis.org

1, 1, 5, 52, 917, 24396, 909002, 45062697, 2862532213, 226403027044, 21794813189810, 2507115921526437, 339421509956163362, 53393907140415300317, 9653668439939308357991, 1987242385193691443059527, 461955240782446199029195253
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[Exp[1/BesselJ[0, 2 Sqrt[x]] - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    A000275[0] = 1; A000275[n_] := A000275[n] = -Sum[(-1)^(n - k) Binomial[n, k]^2 A000275[k], {k, 0, n - 1}]; a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k A000275[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k * A000275(k) * a(n-k).
Previous Showing 21-27 of 27 results.