A000825
Expansion of cos x (1 + sin x ) /cos 2x.
Original entry on oeis.org
1, 1, 3, 8, 57, 256, 2763, 17408, 250737, 2031616, 36581523, 362283008, 7828053417, 91620376576, 2309644635483, 31191159799808, 898621108880097, 13753735117275136, 445777636063460643, 7625476699018231808
Offset: 0
-
With[{nn=20},CoefficientList[Series[Cos[x] (1+Sin[x])/Cos[2x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 08 2013 *)
Original entry on oeis.org
1, 5, 157, 12425, 1836697, 436366445, 152053957237, 73053601590065, 46283414838553777, 37386890114969267285, 37503815980582784378317, 45739346519434253222582105, 66650214918099514832427062857, 114363498315755726948758209518525, 228234739109951323288351261455519397
Offset: 0
-
with(gfun):
series(cos(x)/(1-3*sin(x)^2), x, 30):
L := seriestolist(%):
seq(op(2*i-1,L)*(2*i-2)!, i = 1..floor((1/2)*nops(L)));
# Peter Bala, Feb 06 2017
-
With[{nmax = 50}, CoefficientList[Series[Cos[x]/(1 - 3*Sin[x]^2), {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]] (* G. C. Greubel, Mar 29 2018 *)
-
x='x+O('x^50); v=Vec(serlaplace(cos(x)/(1 - 3*sin(x)^2))); vector(#v\2,n,v[2*n-1]) \\ G. C. Greubel, Mar 29 2018
A098432
Coefficients of polynomials S(n,x) related to Springer numbers.
Original entry on oeis.org
1, 8, 7, 128, 304, 177, 3072, 13952, 21080, 10199, 98304, 724992, 2016000, 2441056, 1051745, 3932160, 42762240, 187643904, 407505664, 428605352, 169913511, 188743680, 2839019520, 17974591488, 60428242944, 111985428352
Offset: 0
S(0,x) = 1,
S(1,x) = 8*x + 7,
S(2,x) = 128*x^2 + 304*x + 177,
S(3,x) = 3072*x^3 + 13952*x^2 + 21080*x + 10199.
-
S(n,x)=if(n<1,1,(2*x+2)*(2*x+4)*S(n-1,x+2)-(2*x+1)^2*S(n-1,x))
A272481
E.g.f. A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2) represented as a triangle, read by rows, where row n lists of coefficients T(n,k) of x^(2*n)*y^k/n! in A(x,y), for k=0..2*n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 3, 1, 0, 0, 3, 15, 25, 15, 3, 0, 0, 17, 119, 329, 455, 329, 119, 17, 0, 0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0, 0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0, 0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0, 0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0
Offset: 0
E.g.f.: A(x,y) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! +
x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! +
x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! +
x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +
x^12*(2073*y + 22803*y^2 + 110605*y^3 + 311355*y^4 + 563013*y^5 + 683067*y^6 + 563013*y^7 + 311355*y^8 + 110605*y^9 + 22803*y^10 + 2073*y^11)/12! +...
where A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2).
This triangle of coefficients of x^(2*n)*y^k/(2*n)!, k=0..2*n, begins:
[1];
[0, 1, 0];
[0, 1, 3, 1, 0];
[0, 3, 15, 25, 15, 3, 0];
[0, 17, 119, 329, 455, 329, 119, 17, 0];
[0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0];
[0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0];
[0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0];
[0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0]; ...
-
{T(n,k) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), k,y)}
for(n=0,10, for(k=0,2*n, print1(T(n,k),", "));print(""))
A151775
Triangle read by rows: T(n,k) = value of (d^2n/dx^2n) (tan^(2k)(x)/cos(x)) at the point x = 0.
Original entry on oeis.org
1, 1, 2, 5, 28, 24, 61, 662, 1320, 720, 1385, 24568, 83664, 100800, 40320, 50521, 1326122, 6749040, 13335840, 11491200, 3628800, 2702765, 98329108, 692699304, 1979524800, 2739623040, 1836172800, 479001600, 199360981, 9596075582
Offset: 0
Triangle begins:
1;
1, 2;
5, 28, 24;
61, 662, 1320, 720;
1385, 24568, 83664, 100800, 40320;
50521, 1326122, 6749040, 13335840, 11491200, 3628800;
-
A151775 := proc(n,k) if n= 0 then 1 ; else taylor( (tan(x))^(2*k)/cos(x),x=0,2*n+1) ; diff(%,x$(2*n)) ; coeftayl(%,x=0,0) ; fi; end: for n from 0 to 10 do for k from 0 to n do printf("%d ", A151775(n,k)) ; od: printf("\n") ; od: # R. J. Mathar, Jun 24 2009
T := proc (n, k) if n = 0 and k = 0 then 1 elif n = 0 then 0 else simplify(subs(x = 0, diff(tan(x)^(2*k)/cos(x), `$`(x, 2*n)))) end if end proc: for n from 0 to 7 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jun 27 2009
# alternative Maple program:
T:= (n, k)-> (2*n)!*coeff(series(tan(x)^(2*k)/cos(x), x, 2*n+1), x, 2*n):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 06 2017
-
T[n_, k_] := (2n)! SeriesCoefficient[Tan[x]^(2k)/Cos[x], {x, 0, 2n}];
T[0, 0] = 1;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)
A262143
Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} c(n,i)*x^i/i ) for n >= 1, where c(n,k) is Shanks' array of generalized Euler and class numbers.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 8, 33, 23, 1, 16, 208, 1011, 371, 1, 30, 768, 14336, 65985, 10515, 1, 46, 2211, 94208, 2091520, 7536099, 461869, 1, 64, 5043, 412860, 24313856, 535261184, 1329205857, 28969177, 1, 96, 9984, 1361948, 164276421, 11025776640, 211966861312, 334169853267, 2454072147
Offset: 1
The square array begins (row indexing n starts at 1)
1 1 3 23 371 10515 461869 ..
1 3 33 1011 65985 7536099 1329205857 ..
1 8 208 14336 2091520 535261184 211966861312 ..
1 16 768 94208 24313856 11025776640 7748875976704 ..
1 30 2211 412860 164276421 115699670490 126686112278631 ..
1 46 5043 1361948 778121381 787337024970 1239870854518999 ..
1 64 9984 3716096 2891509760 3978693525504 8522989918683136 ..
...
Array as a triangle
1
1 1
1 3 3
1 8 33 23
1 16 208 1011 371
1 30 768 14336 65985 10515
1 46 2211 94208 2091520 7536099 461869
1 64 5043 412860 24313856 535261184 1329205857 28969177
1 96 9984 1361948 164276421 11025776640 211966861312 ...
...
- P. Bala, Notes on logarithmic differentiation, the binomial transform and series reversion
- William Y. C. Chen, Neil J. Y. Fan, Jeffrey Y. T. Jia, The generating function for the Dirichlet series Lm(s) Mathematics of Computation, Vol. 81, No. 278, April 2012.
- D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
Cf.
A000233 (column 1),
A000364 (c(1,n)),
A000281 (c(2,n)),
A000436 (c(3,n)),
A000490 (c(4,n)),
A000187 (c(5,n)),
A000192 (c(6,n)),
A064068 (c(7,n)),
A235605,
A235606,
A255881,
A255895,
A262144,
A262145.
Comments