A068381
Number of partitions of n X n checkerboard by two edgewise-connected sets which produce the maximum n^2-2n+2 frontier edges between the two sets.
Original entry on oeis.org
12, 32, 96, 648, 7736, 228424, 11974112, 1599762776, 382467306272, 234367651907856, 258981528765867728, 733498025032488425464, 3770347483688546402804760, 49588653272896250824990166768
Offset: 2
Illustration of a(2)=6*2:
__.__ __.__ __.__ __.__ __.__ __.__
|__| | | |__| | __| |__ | |__.__| | | |
|__.__| |__.__| |__|__| |__|__| |__.__| |__|__|
Illustration of relation of a Hamiltonian path in a 3 x 3 grid to solutions of a(4):
.__.__.__.__. .__.__.__.__. .__.__.__.__. .__.__.__.__.
.__.__ |__.__.__. | | |__.__. | |__.__.__. | | |__.__. |
__.__| <=> | .__.__| | | .__.__| | | .__.__| | | .__.__| |
|__.__. | |__.__.__| | |__.__.__| | |__.__. | | |__.__. |
|__.__.__.__| |__.__.__.__| |__.__.__|__| |__.__.__|__|
A329633
Triangle read by rows: T(n,k) is the number of self-avoiding paths of length n-1+2*k from NW to SW corners in the n X n grid graph (0 <= k <= A000217(n-1), n >= 1).
Original entry on oeis.org
1, 1, 1, 1, 3, 5, 2, 1, 6, 16, 39, 61, 47, 8, 1, 10, 40, 125, 400, 1048, 1905, 2372, 1839, 764, 86, 1, 15, 85, 335, 1237, 4638, 15860, 44365, 99815, 181995, 262414, 285086, 218011, 104879, 26344, 1770
Offset: 1
T(3,0) = 1;
S
|
*
|
E
T(3,1) = 3;
S--* S--* S
| | |
*--* * *--*
| | |
E E--* E--*
T(3,2) = 5;
S--*--* S--*--* S--*--* S--* S
| | | | |
*--*--* *--* * *--* *--*--*
| | | | |
E E--* E--*--* E--*--* E--*--*
T(3,3) = 2;
S--*--* S *--*
| | | |
*--* * *--* *
| | | |
E *--* E--*--*
Triangle starts:
==========================================================
n\k| 0 1 2 3 4 5 6 ... 10 ... 15
---|------------------------------------------------------
1 | 1;
2 | 1, 1;
3 | 1, 3, 5, 2;
4 | 1, 6, 16, 39, 61, 47, 8;
5 | 1, 10, 40, 125, 400, 1048, 1905, ... , 86;
6 | 1, 15, 85, 335, 1237, 4638, 15860, ......... , 1770;
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A329633(n):
if n == 1: return [1]
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
start, goal = 1, n
paths = GraphSet.paths(start, goal)
return [paths.len(n - 1 + 2 * k).len() for k in range(n * (n - 1) // 2 + 1)]
print([i for n in range(1, 7) for i in A329633(n)])
A333903
Number of directed Hamiltonian paths in a 2*n X n grid starting at the upper left corner and finishing in the lower left corner.
Original entry on oeis.org
1, 1, 16, 264, 117852, 43399371, 443064195958, 3575671586791915, 831655228913958996424, 147303585340262824414389642, 774577888161337889995061257722609, 3015734636186832309974653370241824509796, 356606519352227259565296610082412177642016167446
Offset: 1
a(1) = 1;
S
|
*
|
E
a(2) = 1;
S--*
|
*--*
|
*--*
|
E--*
a(3) = 16;
S--*--* S--*--* S--*--* S--*--*
| | | |
*--*--* *--*--* *--*--* *--*--*
| | | |
*--*--* *--*--* * *--* * *--*
| | | | | | | |
*--*--* *--* * *--* * * * *
| | | | | | | |
*--*--* * * * *--* * *--* *
| | | | | | | |
E--*--* E *--* E *--* E--*--*
S--*--* S--*--* S--*--* S--*--*
| | | |
*--* * *--* * *--* * *--* *
| | | | | | | | | | | |
* *--* * *--* * * * * * *
| | | | | | | |
*--*--* * *--* * *--* * * *
| | | | | | | |
*--* * *--* * *--*--* * * *
| | | | | | | |
E *--* E--*--* E--*--* E *--*
S *--* S *--* S *--* S *--*
| | | | | | | | | | | |
*--* * *--* * *--* * *--* *
| | | |
*--*--* *--*--* *--* * *--* *
| | | | | | | |
*--*--* * *--* * *--* * * *
| | | | | | | |
*--* * *--* * *--*--* * * *
| | | | | | | |
E *--* E--*--* E--*--* E *--*
S *--* S *--* S *--* S *--*
| | | | | | | | | | | |
* * * * * * * * * * * *
| | | | | | | | | | | |
*--* * *--* * * * * * * *
| | | | | | | |
*--*--* *--* * *--* * * * *
| | | | | | | |
*--*--* * * * *--* * *--* *
| | | | | | | |
E--*--* E *--* E *--* E--*--*
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333903(n):
universe = tl.grid(n - 1, 2 * n - 1)
GraphSet.set_universe(universe)
start, goal = 1, 2 * n
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
print([A333903(n) for n in range(1, 8)])
a(8), a(10), a(12), a(14)-a(18) from
Ed Wynn, Jun 28 2023
A350148
Number of distinct (left- or right-handed, but not both) two-dimensional, Hilbert-style space-filling curve motifs on the 2n+1 X 2n+1 square subdivision, that, when recursively iterated using strict edge-replacement, create always self-avoiding paths formed of sub-square edges in the lattice.
Original entry on oeis.org
1, 0, 1, 7, 10101, 20305328
Offset: 0
The n=0 case is the trivial/idempotent identity motif and does not converge to a space-filling curve. There are no solutions for the 2n X 2n case.
A384173
Number of Hamiltonian paths from NW to SW corners in an n X n grid reduced for symmetry, i.e., where reflection about the x-axis is not counted as distinct.
Original entry on oeis.org
1, 1, 1, 5, 43, 897, 44209, 4467927, 1043906917, 506673590576, 555799435739334, 1284472450789974196, 6625529679919810063544, 72597408139909172033687226, 1762085630816152820582838187465, 91326629994353561722347679614188407
Offset: 1
The two paths of A000532(3) = 2 are equivalent under reflection about the x-axis:
+ - + - +
|
+ - + +
| | |
+ + - +
+ + - +
| | |
+ - + +
|
+ - + - +
- J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor. 40 (2007) 14667-14678.
- J.-M. Mayer, C. Guez and J. Dayantis, Exact computer enumeration of the number of Hamiltonian paths in small square plane lattices, Physical Review B, Vol. 42 Number 1, 1990.
A363577
Number of inequivalent Hamiltonian paths starting in the lower left corner of an n X n grid graph (paths differing only by rotations and reflections are regarded as equivalent).
Original entry on oeis.org
1, 1, 3, 23, 347, 10199, 683227, 85612967, 25777385143, 14396323278040, 19799561204761862, 50351228336401026361, 319210377672595552740369, 3736517399241599771428011100, 109790442395888863208285555153329, 5952238893391106787883489313797219949
Offset: 1
There are 3 paths for n=3:
+--+--+ +--+--+ +--+ +
| | | | | | |
+ + + + +--+ + + +
| | | | | | | |
+ +--+ + +--+ + +--+
A fourth path:
+--+--+
|
+--+ +
| | |
+ +--+
is the same as the second one in the row above after a 90-degree rotation.
All paths starting E are the same as the corresponding ones starting N after reflection in the forward diagonal.
Comments