cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 288 results. Next

A101849 Indices of primes in sequence defined by A(0) = 37, A(n) = 10*A(n-1) + 27 for n > 0.

Original entry on oeis.org

0, 1, 13, 19, 29, 43, 65, 259, 871, 8845, 26743, 57505, 98471, 106891
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004

Keywords

Comments

Numbers n such that (360*10^n - 27)/9 is prime.
Numbers n such that digit 3 followed by n >= 0 occurrences of digit 9 followed by digit 7 is prime.
Numbers corresponding to terms <= 871 are certified primes.
a(14) > 10^5. - Robert Price, Mar 17 2015.
a(15) > 2*10^5. - Robert Price, Oct 02 2015

Examples

			397 is prime, hence 1 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], PrimeQ[(360*10^# - 27)/9] &] (* Robert Price, Mar 17 2015 *)
  • PARI
    a=37;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+27)
    
  • PARI
    for(n=0,1500,if(isprime((360*10^n-27)/9),print1(n,",")))

Formula

a(n) = A101398(n) - 1.

Extensions

8845 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(11)-a(13) derived from A101398 by Robert Price, Mar 17 2015
a(14) from Robert Price, Oct 02 2015

A101951 Indices of primes in sequence defined by A(0) = 23, A(n) = 10*A(n-1) - 27 for n > 0.

Original entry on oeis.org

0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119, 357, 1487, 1818, 4678, 9820, 27216, 27692, 194412
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004

Keywords

Comments

Numbers n such that 20*10^n + 3 is prime.
Numbers n such that digit 2 followed by n >= 0 occurrences of digit 0 followed by digit 3 is prime.
Numbers corresponding to terms <= 357 are certified primes.
a(21) > 10^5. - Robert Price, Nov 16 2014
a(22) > 2*10^5. - Robert Price, Jul 11 2015

Examples

			2003 is prime, hence 2 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(20*10^n+3)]; // Vincenzo Librandi, Nov 17 2014
  • Mathematica
    Select[Range[0, 1000], PrimeQ[(20 10^# + 3)] &] (* Vincenzo Librandi, Nov 17 2014 *)
  • PARI
    a=23;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
    
  • PARI
    for(n=0,1500,if(isprime(20*10^n+3),print1(n,",")))
    

Formula

a(n) = A081677(n+1) - 1. - Robert Price, Nov 16 2014

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(19)-a(20) derived from A081677 by Robert Price, Nov 16 2014
a(21) from Robert Price, Jul 11 2015

A256537 First differences of corner sequence A256536 associated with A151723.

Original entry on oeis.org

1, 3, 5, 9, 9, 9, 17, 25, 17, 9, 17, 29, 37, 33, 41, 57, 33, 9, 17, 29, 37, 37, 53, 85, 85, 49, 41, 73, 101, 93, 101, 125, 65, 9, 17, 29, 37, 37, 53, 85, 85, 53, 53, 93, 133, 141, 149, 197, 181, 81, 41, 73, 101, 109, 141, 221, 253, 173, 117, 173, 249, 237, 237, 265, 129
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2015

Keywords

Comments

Number of cells turned ON at n-th stage in one of the outside corners of an infinite hexagon-shaped structure on hexagonal grid.
For an animation see "The movie version" in Links section.

Examples

			Written as an irregular triangle in which the row lengths are the absolute values of the terms of A141531, the sequence begins:
  1;
  3;
  5;
  9, 9;
  9, 17, 25, 17;
  9, 17, 29, 37, 33, 41, 57, 33;
  9, 17, 29, 37, 37, 53, 85, 85, 49, 41, 73, 101, 93, 101, 125, 65;
  9, 17, 29, 37, 37, 53, 85, 85, 53, 53, 93, 133, 141, 149, 197, 181, 81, 41, 73, 101, 109, 141, 221, 253, 173, 117, 173, 249, 237, 237, 265, 129;
  ...
It appears that the right border gives A083318, whose representation in base 2 gives A000533.
		

Crossrefs

Formula

a(1) = 1; a(2) = 3.
It appears that a(n) = 1 + (A151724(n) + A151724(n-1))/3, n >= 3.
It appears that a(n) = 1 + (A151723(n) - A151723(n-2))/3, n >= 3.
It appears that a(n) = 1 + 2*(A170898(n-2) + A170898(n-3)), n >= 3.
a(3) = 5.
It appears that a(n) = 1 + 2*(A169779(n-2) - A169779(n-4)), n >= 4.

A330135 a(n) = ((10^(n+1))^4 - 1)/9999 for n >= 0.

Original entry on oeis.org

1, 10001, 100010001, 1000100010001, 10001000100010001, 100010001000100010001, 1000100010001000100010001, 10001000100010001000100010001, 100010001000100010001000100010001
Offset: 0

Views

Author

Bernard Schott, Dec 02 2019

Keywords

Comments

This sequence was the subject of the 6th problem of the 15th British Mathematical Olympiad in 1979 (see the link BMO).
There are no prime numbers in this infinite sequence. Why?
a(0) = 1 and a(1) = 10001 = 73 * 137;
if n even = 2*k, k >= 1, then A094028(n) divides a(n);
if n odd = 2*k+1, k >= 1, then a(k) divides a(n).

Examples

			a(2) = ((10^3)^4 - 1)/9999 = 100010001 = 10101 * 9901 where 10101 = A094028(2).
a(3) = ((10^4)^4 - 1)/9999 = 1000100010001 = 10001 * 100000001 where 10001 = a(1).
From _Omar E. Pol_, Dec 04 2019: (Start)
Illustration of initial terms:
                  1;
                10001;
              100010001;
            1000100010001;
          10001000100010001;
        100010001000100010001;
      1000100010001000100010001;
    10001000100010001000100010001;
  100010001000100010001000100010001;
...
(End)
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 6 pp. 68 and 201 (1979).

Crossrefs

Cf. A000533 (1000...0001), A094028 (10101...101), A261544 (1001001...1001).
Cf. A131865 (similar, with 2^(n+1)).

Programs

  • Maple
    A: = seq((10^(4*n+4)-1)/9999, n=1..4);
  • Mathematica
    Table[((10^(n+1))^4 - 1)/9999, {n, 0, 8}] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    Vec(1 / ((1 - x)*(1 - 10000*x)) + O(x^11)) \\ Colin Barker, Dec 05 2019

Formula

a(n) = (10^(4*n+4) - 1)/9999 for n >= 0.
G.f.: 1 / ((1 - x)*(1 - 10000*x)). - Colin Barker, Dec 05 2019

A056244 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 21 for n > 0.

Original entry on oeis.org

0, 1, 3, 5, 93, 159, 359, 1469, 2897, 3093, 3111, 15697, 17955, 42261, 111031
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2000

Keywords

Comments

Numbers n such that (120*10^n - 21)/9 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 3 followed by digit 1 is prime.
Numbers corresponding to terms <= 3111 are certified primes. For larger numbers see P. De Geest, PDP Reference Table.

Examples

			131 is prime, hence 1 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(1*10^n + 3*(10^n - 1)/9)*10 + 1], Print[n]], {n, 1, 2500}]
    Select[Range[0, 2000], PrimeQ[(120 10^# - 21) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
  • PARI
    a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+21)
    
  • PARI
    for(n=0,1500,if(isprime((120*10^n-21)/9),print1(n,",")))

Formula

a(n) = A082697(n-1) - 2 for n > 1.

Extensions

More terms and additional comments from Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Edited by N. J. A. Sloane, Jun 15 2007
Updates from De Geest site by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(15)=111031 from Ray Chandler, Apr 14 2011
Updated comments section and a link, by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 04 2014

A056246 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 41 for n > 0.

Original entry on oeis.org

0, 1, 3, 19, 31, 399, 561, 7015, 37683
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2000

Keywords

Comments

Numbers n such that (140*10^n - 41)/9 is a prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 5 followed by digit 1 is a prime.
Numbers corresponding to terms <= 561 are certified primes.

Examples

			151 is a prime, hence 1 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[(140 10^# - 41) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
  • PARI
    a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+41)
    
  • PARI
    for(n=0,1500,if(isprime((140*10^n-41)/9),print1(n,",")))

Formula

a(n) = A082699(n-1) - 2 for n > 1.

Extensions

Additional comments from Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Edited by N. J. A. Sloane, Jun 15 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Added and updated a link, by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 04 2014

A056247 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 51 for n > 0.

Original entry on oeis.org

0, 3, 11, 15, 17, 35, 51, 71, 99, 6231, 24027, 40221, 66393
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2000

Keywords

Comments

Numbers n such that (150*10^n - 51)/9 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 6 followed by digit 1 is prime.
Numbers corresponding to terms <= 99 are certified primes.

Examples

			16661 is prime, hence 3 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[(150 10^# - 51) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
  • PARI
    a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+51)
    
  • PARI
    for(n=0,1500,if(isprime((150*10^n-51)/9),print1(n,",")))

Formula

a(n) = A082700(n-1) - 2 for n > 1.

Extensions

Additional comments from Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Edited by N. J. A. Sloane, Jun 15 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Added one more term from the PDP table and a link, by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 04 2014

A056249 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 71 for n > 0.

Original entry on oeis.org

0, 1, 7, 13, 39, 91, 127, 883, 9423, 14767, 19257, 31233
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2000

Keywords

Comments

Numbers n such that (170*10^n - 71)/9 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 8 followed by digit 1 is prime.
Numbers corresponding to terms <= 883 are certified primes.

Examples

			181 is prime, hence 1 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[(170 10^# - 71) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
  • PARI
    a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+71)
    
  • PARI
    for(n=0,1500,if(isprime((170*10^n-71)/9),print1(n,",")))

Formula

a(n) = A082702(n-1) - 2 for n > 1.

Extensions

Additional comments from Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Edited by N. J. A. Sloane, Jun 15 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Updated and added a link, by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 04 2014

A056250 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 81 for n > 0.

Original entry on oeis.org

0, 1, 3, 7, 39, 85, 199, 729, 1459, 23671, 28629
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2000

Keywords

Comments

Numbers n such that (180*10^n - 81)/9 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 9 followed by digit 1 is prime.
Numbers corresponding to terms <= 1459 are certified primes. For larger numbers see P. De Geest, PDP Reference Table.

Examples

			191 is prime, hence 1 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[(180 10^# - 81) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
  • PARI
    a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+81)
    
  • PARI
    for(n=0,1500,if(isprime((180*10^n-81)/9),print1(n,",")))

Formula

a(n) = A082703(n-1) - 2 for n > 1.

Extensions

Additional comments from Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Edited by N. J. A. Sloane, Jun 15 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Updated comments section and a link, by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 04 2014

A056252 Indices of primes in sequence defined by A(0) = 33, A(n) = 10*A(n-1) - 7 for n > 0.

Original entry on oeis.org

5, 7, 893, 1523, 3035, 21155
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2000

Keywords

Comments

Numbers n such that (290*10^n + 7)/9 is prime.
Numbers n such that the digit 3 followed by n >= 0 occurrences of the digit 2 followed by the digit 3 is prime.
Numbers corresponding to terms <= 3035 are certified primes.

Examples

			3222223 is prime, hence 5 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[(290 10^# + 7) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
  • PARI
    a=33;for(n=0,1600,if(isprime(a),print1(n,","));a=10*a-7)
    
  • PARI
    for(n=0,1600,if(isprime((290*10^n+7)/9),print1(n,",")))

Formula

a(n) = A082705(n) - 2.

Extensions

Additional comments from Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004
Edited by N. J. A. Sloane, Apr 17 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Comments section updated and a link added by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 05 2014
Previous Showing 41-50 of 288 results. Next