A101849
Indices of primes in sequence defined by A(0) = 37, A(n) = 10*A(n-1) + 27 for n > 0.
Original entry on oeis.org
0, 1, 13, 19, 29, 43, 65, 259, 871, 8845, 26743, 57505, 98471, 106891
Offset: 1
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004
397 is prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 1000], PrimeQ[(360*10^# - 27)/9] &] (* Robert Price, Mar 17 2015 *)
-
a=37;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+27)
-
for(n=0,1500,if(isprime((360*10^n-27)/9),print1(n,",")))
8845 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A101951
Indices of primes in sequence defined by A(0) = 23, A(n) = 10*A(n-1) - 27 for n > 0.
Original entry on oeis.org
0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119, 357, 1487, 1818, 4678, 9820, 27216, 27692, 194412
Offset: 1
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004
2003 is prime, hence 2 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
[n: n in [0..500] | IsPrime(20*10^n+3)]; // Vincenzo Librandi, Nov 17 2014
-
Select[Range[0, 1000], PrimeQ[(20 10^# + 3)] &] (* Vincenzo Librandi, Nov 17 2014 *)
-
a=23;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
-
for(n=0,1500,if(isprime(20*10^n+3),print1(n,",")))
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A256537
First differences of corner sequence A256536 associated with A151723.
Original entry on oeis.org
1, 3, 5, 9, 9, 9, 17, 25, 17, 9, 17, 29, 37, 33, 41, 57, 33, 9, 17, 29, 37, 37, 53, 85, 85, 49, 41, 73, 101, 93, 101, 125, 65, 9, 17, 29, 37, 37, 53, 85, 85, 53, 53, 93, 133, 141, 149, 197, 181, 81, 41, 73, 101, 109, 141, 221, 253, 173, 117, 173, 249, 237, 237, 265, 129
Offset: 1
Written as an irregular triangle in which the row lengths are the absolute values of the terms of A141531, the sequence begins:
1;
3;
5;
9, 9;
9, 17, 25, 17;
9, 17, 29, 37, 33, 41, 57, 33;
9, 17, 29, 37, 37, 53, 85, 85, 49, 41, 73, 101, 93, 101, 125, 65;
9, 17, 29, 37, 37, 53, 85, 85, 53, 53, 93, 133, 141, 149, 197, 181, 81, 41, 73, 101, 109, 141, 221, 253, 173, 117, 173, 249, 237, 237, 265, 129;
...
It appears that the right border gives A083318, whose representation in base 2 gives A000533.
A330135
a(n) = ((10^(n+1))^4 - 1)/9999 for n >= 0.
Original entry on oeis.org
1, 10001, 100010001, 1000100010001, 10001000100010001, 100010001000100010001, 1000100010001000100010001, 10001000100010001000100010001, 100010001000100010001000100010001
Offset: 0
a(2) = ((10^3)^4 - 1)/9999 = 100010001 = 10101 * 9901 where 10101 = A094028(2).
a(3) = ((10^4)^4 - 1)/9999 = 1000100010001 = 10001 * 100000001 where 10001 = a(1).
From _Omar E. Pol_, Dec 04 2019: (Start)
Illustration of initial terms:
1;
10001;
100010001;
1000100010001;
10001000100010001;
100010001000100010001;
1000100010001000100010001;
10001000100010001000100010001;
100010001000100010001000100010001;
...
(End)
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 6 pp. 68 and 201 (1979).
Cf.
A131865 (similar, with 2^(n+1)).
-
A: = seq((10^(4*n+4)-1)/9999, n=1..4);
-
Table[((10^(n+1))^4 - 1)/9999, {n, 0, 8}] (* Amiram Eldar, Dec 04 2019 *)
-
Vec(1 / ((1 - x)*(1 - 10000*x)) + O(x^11)) \\ Colin Barker, Dec 05 2019
A056244
Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 21 for n > 0.
Original entry on oeis.org
0, 1, 3, 5, 93, 159, 359, 1469, 2897, 3093, 3111, 15697, 17955, 42261, 111031
Offset: 1
131 is prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Do[If[PrimeQ[(1*10^n + 3*(10^n - 1)/9)*10 + 1], Print[n]], {n, 1, 2500}]
Select[Range[0, 2000], PrimeQ[(120 10^# - 21) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+21)
-
for(n=0,1500,if(isprime((120*10^n-21)/9),print1(n,",")))
More terms and additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Updates from De Geest site by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
A056246
Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 41 for n > 0.
Original entry on oeis.org
0, 1, 3, 19, 31, 399, 561, 7015, 37683
Offset: 1
151 is a prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 2000], PrimeQ[(140 10^# - 41) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+41)
-
for(n=0,1500,if(isprime((140*10^n-41)/9),print1(n,",")))
Additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A056247
Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 51 for n > 0.
Original entry on oeis.org
0, 3, 11, 15, 17, 35, 51, 71, 99, 6231, 24027, 40221, 66393
Offset: 1
16661 is prime, hence 3 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 2000], PrimeQ[(150 10^# - 51) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+51)
-
for(n=0,1500,if(isprime((150*10^n-51)/9),print1(n,",")))
Additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Added one more term from the PDP table and a link, by
Patrick De Geest, Nov 02 2014
A056249
Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 71 for n > 0.
Original entry on oeis.org
0, 1, 7, 13, 39, 91, 127, 883, 9423, 14767, 19257, 31233
Offset: 1
181 is prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 2000], PrimeQ[(170 10^# - 71) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+71)
-
for(n=0,1500,if(isprime((170*10^n-71)/9),print1(n,",")))
Additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A056250
Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 81 for n > 0.
Original entry on oeis.org
0, 1, 3, 7, 39, 85, 199, 729, 1459, 23671, 28629
Offset: 1
191 is prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 2000], PrimeQ[(180 10^# - 81) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+81)
-
for(n=0,1500,if(isprime((180*10^n-81)/9),print1(n,",")))
Additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A056252
Indices of primes in sequence defined by A(0) = 33, A(n) = 10*A(n-1) - 7 for n > 0.
Original entry on oeis.org
5, 7, 893, 1523, 3035, 21155
Offset: 1
3222223 is prime, hence 5 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 2000], PrimeQ[(290 10^# + 7) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=33;for(n=0,1600,if(isprime(a),print1(n,","));a=10*a-7)
-
for(n=0,1600,if(isprime((290*10^n+7)/9),print1(n,",")))
Additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Comments