A354013
Expansion of e.g.f. 1/(1 + log(1-x) * (1 - log(1-x))).
Original entry on oeis.org
1, 1, 5, 32, 278, 3014, 39226, 595608, 10335888, 201785688, 4377151464, 104444584848, 2718748442208, 76668029954736, 2328328726108368, 75759574181169792, 2629417097250852480, 96963968323279825920, 3786037089608099128320, 156041617540423798782720
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)*(1-log(1-x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*(1+2*sum(k=1, j-1, 1/k))*binomial(i, j)*v[i-j+1])); v;
-
a(n) = sum(k=0, n, k!*fibonacci(k+1)*abs(stirling(n, k, 1)));
A263968
a(n) = Li_{-n}(phi) + Li_{-n}(1-phi), where Li_n(x) is the polylogarithm, phi=(1+sqrt(5))/2 is the golden ratio.
Original entry on oeis.org
-3, 4, -18, 112, -930, 9664, -120498, 1752832, -29140290, 545004544, -11325668178, 258892951552, -6456024679650, 174410345857024, -5074158021135858, 158168121299894272, -5258993667674555010, 185786981314092335104, -6949466928081909755538
Offset: 0
For n = 4, Li_{-4}(phi) = -930 - 416*sqrt(5), so a(4) = -930 and A000557(4) = 416.
-
a := n -> polylog(-n,(1+sqrt(5))/2)+polylog(-n,(1-sqrt(5))/2):
seq(round(evalf(a(n),32)), n=0..18); # Peter Luschny, Nov 01 2015
-
Round@Table[PolyLog[-n, GoldenRatio] + PolyLog[-n, 1-GoldenRatio], {n, 0, 20}]
Table[(-1)^(n+1) Sum[k! LucasL[k+2] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
-
vector(100, n, n--; (-1)^(n+1)*sum(k=0, n, k!*stirling(n, k, 2)*(2*fibonacci(k+1) + fibonacci(k+2)))) \\ Altug Alkan, Oct 31 2015
A337555
a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} binomial(n,k) * (3^k-1) * a(n-k).
Original entry on oeis.org
1, 1, 6, 43, 408, 4861, 69516, 1159663, 22108848, 474192601, 11300589876, 296237533483, 8471642214888, 262456441714741, 8756520140416236, 313017838828154503, 11935355244756882528, 483537933291091103281, 20741938090482567562596, 939180816648348685174723
Offset: 0
-
a[0] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n, k] (3^k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[2/(2 + Exp[x] - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(2 / (2 + exp(x + O(x*x^n)) - exp(3*x + O(x*x^n)))))} \\ Andrew Howroyd, Aug 31 2020
A376111
a(0) = 1; a(n) = Sum_{k=1..n} (2^k-1) * a(k-1) * a(n-k).
Original entry on oeis.org
1, 1, 4, 35, 600, 19942, 1299768, 167796051, 43131308656, 22127283690338, 22680691426392504, 46472849736334410494, 190399379929624643874384, 1559942353285454499773312748, 25559656412925984160985399396784, 837564388804449970974724247002202883
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[(2^k - 1) a[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
nmax = 15; A[] = 0; Do[A[x] = 1/(1 + x A[x] - 2 x A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A305923
Expansion of e.g.f. exp(x)/(1 - log(1 + x) - log(1 + x)^2).
Original entry on oeis.org
1, 2, 6, 21, 105, 580, 4332, 33173, 333057, 3249334, 41175698, 485901669, 7470988137, 102962077608, 1870375878472, 29342124588357, 617978798588225, 10818920340476010, 260570216908845406, 5009431835664474101, 136578252867673635369, 2844357524328057280332, 87134882338620095240484
Offset: 0
E.g.f.: A(x) = 1 + 2*x/1! + 6*x^2/2! + 21*x^3/3! + 105*x^4/4! + 580*x^5/5! + 4332*x^6/6! + ...
-
a:=series(exp(x)/(1-log(1+x)-log(1+x)^2),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Exp[x]/(1 - Log[1 + x] - Log[1 + x]^2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Sum[Binomial[n, k] StirlingS1[k, j] j! Fibonacci[j + 1], {j, 0, k}], {k, 0, n}], {n, 0, 22}]
A364822
Expansion of e.g.f. cosh(x) / (1 - 2*sinh(x)).
Original entry on oeis.org
1, 2, 9, 56, 465, 4832, 60249, 876416, 14570145, 272502272, 5662834089, 129446475776, 3228012339825, 87205172928512, 2537079010567929, 79084060649947136, 2629496833837277505, 92893490657046167552, 3474733464040954877769, 137195165161622584426496, 5702069567580948171751185
Offset: 0
-
a := n -> add(binomial(n,2*k)*add(j!*combinat[fibonacci](j+2)*Stirling2(n-2*k,j), j=0..n-2*k), k=0..floor(n/2)):
seq(a(n), n = 0 .. 20);
# second program:
b := proc(n) option remember; `if`(n = 0, 1, 2+2*add(binomial(n,2*k-1)*b(n-2*k+1), k=1..floor((n+1)/2))) end:
a := proc(n) `if`(n = 0, 1, b(n)/2) end: seq(a(n), n = 0 .. 20);
# third program:
(1/2)*((exp(-x) + exp(x))/(1 + exp(-x) - exp(x))): series(%, x, 21):
seq(n!*coeff(%, x, n), n = 0..20); # Peter Luschny, Nov 07 2023
-
a[n_]:=n!*SeriesCoefficient[Cosh[x]/(1 - 2*Sinh[x]),{x,0,n}]; Array[a,21,0] (* Stefano Spezia, Nov 07 2023 *)
-
my(x='x+O('x^30)); Vec(serlaplace(cosh(x) / (1 - 2*sinh(x)))) \\ Michel Marcus, Nov 07 2023
Comments