A330105
MM-number of the brute-force normalization of the multiset of multisets with MM-number n.
Original entry on oeis.org
1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 69, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 69, 138
Offset: 1
This sequence is idempotent and its image/fixed points are
A330104.
Non-isomorphic multiset partitions are
A007716.
Other fixed points:
-
brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
Table[Map[Times@@Prime/@#&,brute[primeMS/@primeMS[n]],{0,1}],{n,100}]
A367909
Numbers n such that there is more than one way to choose a different binary index of each binary index of n.
Original entry on oeis.org
4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
4: {{1,2}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
72: {{3},{1,2,3}}
These set-systems are counted by
A367772.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement
A368097.
BII-numbers:
A309314 (hyperforests),
A326701 (set partitions),
A326703 (chains),
A326704 (antichains),
A326749 (connected),
A326750 (clutters),
A326751 (blobs),
A326752 (hypertrees),
A326754 (covers),
A326783 (uniform),
A326784 (regular),
A326788 (simple),
A330217 (achiral).
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]
A369146
Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0
The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
. . {{1},{2},{1,2}} {{1},{2},{1,2}}
{{1},{2},{3},{1,2}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
Without the choice condition we have
A000666, labeled
A006125 (shifted).
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]
A330101
BII-number of the brute-force normalization of the set-system with BII-number n.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 33, 19, 19, 15, 4, 5, 33, 19, 20, 21, 37, 23, 5, 7, 19, 15, 37, 23, 51, 31, 4, 33, 5, 19, 20, 37, 21, 23, 5, 19, 7, 15, 37, 51, 23, 31, 20, 37, 37, 51, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69, 69
Offset: 0
This sequence is idempotent and its image and fixed points are
A330099.
Non-isomorphic multiset partitions are
A007716.
Unlabeled spanning set-systems by vertices are
A055621.
Unlabeled set-systems by weight are
A283877.
Other fixed points:
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
fbi[q_]:=If[q=={},0,Total[2^q]/2];
brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
Table[fbi[fbi/@brute[bpe/@bpe[n]]],{n,0,100}]
A330226
BII-numbers of fully chiral set-systems.
Original entry on oeis.org
0, 1, 2, 5, 6, 8, 13, 14, 17, 19, 22, 23, 24, 26, 28, 29, 34, 35, 37, 39, 40, 41, 44, 46, 49, 50, 57, 58, 69, 70, 77, 78, 81, 83, 86, 87, 88, 90, 92, 93, 98, 99, 101, 103, 104, 105, 108, 110, 113, 114, 121, 122, 128, 133, 134, 145, 150, 151, 152, 156, 157, 162
Offset: 1
The sequence of all fully chiral set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{3},{1,2},{1,3}}
29: {{1},{3},{1,2},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
For example, 28 is in the sequence because all six permutations give different representatives, namely:
{{1},{1,2},{2,3}}
{{1},{1,3},{2,3}}
{{2},{1,2},{1,3}}
{{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
Achiral set-systems are counted by
A083323.
BII-numbers of achiral set-systems are
A330217.
Non-isomorphic, fully chiral multiset partitions are
A330227.
Fully chiral partitions are counted by
A330228.
Fully chiral covering set-systems are
A330229.
Fully chiral factorizations are
A330235.
MM-numbers of fully chiral multisets of multisets are
A330236.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
Select[Range[0,100],Length[graprms[bpe/@bpe[#]]]==Length[Union@@bpe/@bpe[#]]!&]
A367772
Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.
Original entry on oeis.org
0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0
Non-isomorphic representatives of the a(3) = 23 set-systems:
{{1,2}}
{{1,2,3}}
{{1},{2,3}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
For at least one choice we have
A367902.
These set-systems have ranks
A367909.
Cf.
A059201,
A102896,
A133686,
A283877,
A306445,
A323818,
A355741,
A367770,
A367862,
A367869,
A367901,
A367905.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]
A368409
Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0
Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
{1}{2}{12} . {1}{2}{13}{23} {1}{3}{23}{123} {1}{5}{15}{2345}
{1}{2}{3}{123} {1}{4}{14}{234} {2}{13}{23}{123}
{2}{3}{13}{23} {2}{3}{23}{123} {3}{13}{23}{123}
{3}{12}{13}{23} {3}{4}{34}{1234}
{1}{2}{3}{13}{23} {1}{2}{13}{24}{34}
{1}{2}{3}{14}{234}
{1}{2}{3}{23}{123}
{1}{2}{3}{4}{1234}
{1}{3}{4}{14}{234}
{2}{3}{12}{13}{23}
{2}{3}{13}{24}{34}
{2}{3}{14}{24}{34}
{2}{3}{4}{14}{234}
{2}{4}{13}{24}{34}
{3}{4}{13}{24}{34}
{3}{4}{14}{24}{34}
This is the connected case of
A368094.
Allowing repeat edges only: connected case of
A368421 (complement
A368422).
-
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]
A330055
Number of non-isomorphic set-systems of weight n with no singletons or endpoints.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 16, 24, 90, 179, 567, 1475, 4623, 13650, 44475, 144110, 492017, 1706956, 6124330, 22442687, 84406276, 324298231, 1273955153, 5106977701, 20885538133, 87046940269, 369534837538, 1596793560371, 7019424870960, 31374394197536, 142514998263015
Offset: 0
Non-isomorphic representatives of the a(7) = 1 through a(10) = 16 set-systems:
{12}{13}{123} {12}{134}{234} {12}{134}{1234} {12}{1345}{2345}
{12}{34}{1234} {123}{124}{134} {123}{124}{1234}
{12}{13}{24}{34} {12}{13}{14}{234} {123}{145}{2345}
{12}{13}{23}{123} {12}{345}{12345}
{12}{13}{24}{134} {12}{13}{124}{134}
{12}{13}{124}{234}
{12}{13}{14}{1234}
{12}{13}{24}{1234}
{12}{13}{245}{345}
{12}{13}{45}{2345}
{12}{34}{123}{124}
{12}{34}{125}{345}
{12}{34}{135}{245}
{13}{24}{123}{124}
{12}{13}{14}{23}{24}
{12}{13}{24}{35}{45}
Non-isomorphic set-systems with no singletons are
A306005.
Non-isomorphic set-systems with no endpoints are
A330054.
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g-subst(g,x,x^2)}
S(q, t, k)={(x-x^2)*sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)-S(q,t,n\t),x,x^t)/t )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024
A330102
BII-number of the VDD-normalization of the set-system with BII-number n.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 33, 19, 19, 15, 4, 5, 33, 19, 20, 21, 37, 23, 5, 7, 19, 15, 37, 23, 51, 31, 4, 33, 5, 19, 20, 37, 21, 23, 5, 19, 7, 15, 37, 51, 23, 31, 20, 37, 37, 51, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69, 69
Offset: 0
56 is the BII-number of {{3},{1,3},{2,3}}, which has VDD-normalization {{1},{1,2},{1,3}} with BII-number 21, so a(56) = 21.
This sequence is idempotent and its image/fixed points are
A330100.
Non-isomorphic multiset partitions are
A007716.
Unlabeled spanning set-systems counted by vertices are
A055621.
Unlabeled set-systems counted by weight are
A283877.
Cf.
A000120,
A000612,
A048793,
A070939,
A300913,
A319559,
A321405,
A326031,
A326754,
A330061,
A330101.
Other fixed points:
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
fbi[q_]:=If[q=={},0,Total[2^q]/2];
sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
Table[fbi[fbi/@sysnorm[bpe/@bpe[n]]],{n,0,100}]
A367917
BII-numbers of set-systems with the same number of edges as covered vertices.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1
The terms together with the corresponding set-systems begin:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A057500,
A059201,
A072639,
A096111,
A116508,
A309326,
A326031,
A326702,
A326753,
A326754,
A367770,
A367902,
A367905.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
Comments