A057500
Number of connected labeled graphs with n edges and n nodes.
Original entry on oeis.org
0, 0, 1, 15, 222, 3660, 68295, 1436568, 33779340, 880107840, 25201854045, 787368574080, 26667815195274, 973672928417280, 38132879409281475, 1594927540549217280, 70964911709203684440, 3347306760024413356032, 166855112441313024389625, 8765006377126199463936000
Offset: 1
Qing-Hu Hou and David C. Torney (dct(AT)lanl.gov), Sep 01 2000
E.g., a(4)=15 because there are three different (labeled) 4-cycles and 12 different labeled graphs with a 3-cycle and an attached, external vertex.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
- C. L. Mallows, Letter to N. J. A. Sloane, 1980.
- R. J. Riddell, Contributions to the theory of condensation, Dissertation, Univ. of Michigan, Ann Arbor, 1951.
- Alois P. Heinz, Table of n, a(n) for n = 1..300 (terms n = 1..50 from Washington G. Bomfim)
- Federico Ardila, Matthias Beck, Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
- Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 133.
- S. Janson, D. E. Knuth, T. Łuczak and B. Pittel, The Birth of the Giant Component, arXiv:math/9310236 [math.PR], 1993.
- S. Janson, D. E. Knuth, T. Łuczak and B. Pittel, The Birth of the Giant Component, Random Structures and Algorithms Vol. 4 (1993), 233-358.
- Younng-Jin Kim and Woong Kook, Winding number and Cutting number of Harmonic cycle, arXiv:1812.04930 [math.CO], 2018.
- C. L. Mallows, Letter to N. J. A. Sloane, 1980
- Marko Riedel et al., Non-isomorphic, connected, unicyclic graphs, Math Stackexchange, November 2018. (Proof of closed form by Cauchy Coefficient Formula / Lagrange Inversion.)
- Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
This is the connected and covering case of
A116508.
This is the covering case of
A370317.
Counting only covering vertices gives
A370318.
Cf.
A062734,
A098909,
A123527,
A129137,
A133686,
A143543,
A323818,
A367916,
A367917,
A369191,
A369197.
-
egf:= -1/2*ln(1+LambertW(-x)) +1/2*LambertW(-x) -1/4*LambertW(-x)^2:
a:= n-> n!*coeff(series(egf, x, n+3), x, n):
seq(a(n), n=1..25); # Alois P. Heinz, Mar 27 2013
-
nn=20; t=Sum[n^(n-1) x^n/n!, {n,1,nn}]; Drop[Range[0,nn]! CoefficientList[Series[Log[1/(1-t)]/2-t^2/4-t/2, {x,0,nn}], x], 1] (* Geoffrey Critzer, Oct 07 2012 *)
a[n_] := (n-1)!*n^n/2*Sum[1/(n^k*(n-k)!), {k, 3, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 15 2014, after Vladeta Jovovic *)
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[#]==n&&Length[csm[#]]<=1&]],{n,0,5}] (* Gus Wiseman, Feb 19 2024 *)
-
# Warning: Floating point calculation. Adjust precision as needed!
from mpmath import mp, chop, gammainc
mp.dps = 200; mp.pretty = True
for n in (1..100):
print(chop((n^(n-2)*(1-3*n)+exp(n)*gammainc(n+1, n)/n)/2))
# Peter Luschny, Jan 27 2016
A116508
a(n) = C( C(n,2), n).
Original entry on oeis.org
1, 0, 0, 1, 15, 252, 5005, 116280, 3108105, 94143280, 3190187286, 119653565850, 4922879481520, 220495674290430, 10682005290753420, 556608279578340080, 31044058215401404845, 1845382436487682488000, 116475817125419611477660, 7779819801401934344268210
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Mar 21 2006
a(5) = C(C(5,2),5) = C(10,5) = 252.
-
[0] cat [(Binomial(Binomial(n+2, n), n+2)): n in [0..20]]; // Vincenzo Librandi, Nov 03 2014
-
a:= n-> binomial(binomial(n, 2), n):
seq(a(n), n=0..20);
-
nn = 18; f[x_, y_] :=
Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 1, nn}]; Table[
n! Coefficient[Series[f[x, y], {x, 0, nn}], x^n y^n], {n, 1, nn}] (* Geoffrey Critzer, Nov 02 2014 *)
Table[Length[Subsets[Subsets[Range[n],{2}],{n}]],{n,0,5}] (* Gus Wiseman, Dec 22 2023 *)
Table[SeriesCoefficient[(1 + x)^(n*(n-1)/2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
from math import comb
def A116508(n): return comb(n*(n-1)>>1,n) # Chai Wah Wu, Jul 02 2024
-
[(binomial(binomial(n+2,n),n+2)) for n in range(-1, 17)] # Zerinvary Lajos, Nov 30 2009
A367863
Number of n-vertex labeled simple graphs with n edges and no isolated vertices.
Original entry on oeis.org
1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
Offset: 0
Non-isomorphic representatives of the a(4) = 15 graphs:
{{1,2},{1,3},{1,4},{2,3}}
{{1,2},{1,3},{2,4},{3,4}}
The non-covering version is
A116508.
A143543 counts simple labeled graphs by number of connected components.
Cf.
A003465,
A006126,
A305000,
A316983,
A319559,
A323817,
A326754,
A367769,
A367901,
A367902,
A367903.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[#]==n&]],{n,0,5}]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n)) \\ Andrew Howroyd, Dec 29 2023
A129271
Number of labeled n-node connected graphs with at most one cycle.
Original entry on oeis.org
1, 1, 1, 4, 31, 347, 4956, 85102, 1698712, 38562309, 980107840, 27559801736, 849285938304, 28459975589311, 1030366840792576, 40079074477640850, 1666985134587145216, 73827334760713500233, 3468746291121007607808, 172335499299097826575564, 9027150377126199463936000
Offset: 0
a(4) = 16 + 3*3 = 31.
From _Gus Wiseman_, Feb 19 2024: (Start)
The a(0) = 1 through a(3) = 4 graph edge sets:
{} . {{1,2}} {{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
(End)
- J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.
The non-connected non-covering version is
A133686.
A062734 counts connected graphs by number of edges.
Cf.
A006649,
A116508,
A134964,
A143543,
A323818,
A367862,
A367863,
A367867,
A367916,
A367917,
A368951.
-
a := n -> `if`(n=0,1,((n-1)*exp(n)*GAMMA(n-1,n)+n^(n-2)*(3-n))/2):
seq(simplify(a(n)),n=0..16); # Peter Luschny, Jan 18 2016
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[ Log[1/(1-t)]/2+t/2-3t^2/4+1,{x,0,nn}],x] (* Geoffrey Critzer, Mar 23 2013 *)
-
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + t/2 - 3*t^2/4 + 1))} \\ Andrew Howroyd, Nov 07 2019
A367862
Number of n-vertex labeled simple graphs with the same number of edges as covered vertices.
Original entry on oeis.org
1, 1, 1, 2, 20, 308, 5338, 105298, 2366704, 60065072, 1702900574, 53400243419, 1836274300504, 68730359299960, 2782263907231153, 121137565273808792, 5645321914669112342, 280401845830658755142, 14788386825536445299398, 825378055206721558026931, 48604149005046792753887416
Offset: 0
Non-isomorphic representatives of the a(4) = 20 graphs:
{}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,4},{2,3}}
{{1,2},{1,3},{2,4},{3,4}}
Counting all vertices (not just covered) gives
A116508.
A143543 counts simple labeled graphs by number of connected components.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]==Length[Union@@#]&]],{n,0,5}]
-
\\ Here b(n) is A367863(n)
b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n))
a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023
A136556
a(n) = binomial(2^n - 1, n).
Original entry on oeis.org
1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
{a(n) = binomial(2^n-1,n)}
for(n=0, 20, print1(a(n), ", "))
-
/* As coefficient of x^n in the g.f.: */
{a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
-
[binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A370802
Positive integers with as many prime factors (A001222) as distinct divisors of prime indices (A370820).
Original entry on oeis.org
1, 2, 6, 9, 10, 22, 25, 28, 30, 34, 42, 45, 62, 63, 66, 75, 82, 92, 98, 99, 102, 104, 110, 118, 121, 134, 140, 147, 152, 153, 156, 166, 170, 186, 210, 218, 228, 230, 232, 234, 246, 254, 260, 275, 276, 279, 289, 308, 310, 314, 315, 330, 342, 343, 344, 348, 350
Offset: 1
The prime indices of 1617 are {2,4,4,5}, with distinct divisors {1,2,4,5}, so 1617 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
22: {1,5}
25: {3,3}
28: {1,1,4}
30: {1,2,3}
34: {1,7}
42: {1,2,4}
45: {2,2,3}
62: {1,11}
63: {2,2,4}
66: {1,2,5}
75: {2,3,3}
82: {1,13}
92: {1,1,9}
98: {1,4,4}
99: {2,2,5}
102: {1,2,7}
104: {1,1,1,6}
For factors instead of divisors on the RHS we have
A319899.
A version for binary indices is
A367917.
For (greater than) instead of (equal) we have
A370348, counted by
A371171.
For divisors instead of factors on LHS we have
A371165, counted by
A371172.
For only distinct prime factors on LHS we have
A371177, counted by
A371178.
A001221 counts distinct prime factors.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
Cf.
A000792,
A003963,
A355529,
A355737,
A355739,
A355741,
A368100,
A370808,
A370813,
A370814,
A371127.
-
Select[Range[100],PrimeOmega[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
A367916
Number of sets of nonempty subsets of {1..n} with the same number of edges as covered vertices.
Original entry on oeis.org
1, 2, 6, 45, 1376, 161587, 64552473, 85987037645, 386933032425826, 6005080379837219319, 328011924848834642962619, 64153024576968812343635391868, 45547297603829979923254392040011994, 118654043008142499115765307533395739785599
Offset: 0
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
These set-systems have ranks
A367917.
A059201 counts covering T_0 set-systems.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A092918,
A102896,
A133686,
A306445,
A323818,
A355740,
A367770,
A367869,
A367901,
A367902,
A367905.
-
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Length[Union@@#]==Length[#]&]],{n,0,3}]
-
\\ Here b(n) is A054780(n).
b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(2^k-1, n))
a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023
A054780
Number of n-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0
From _Gus Wiseman_, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
{1}{2}{3} {1}{2}{13} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{23} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{3}{12} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{23} {1}{12}{23} {2}{12}{123}
{2}{3}{12} {1}{13}{23} {2}{13}{123}
{2}{3}{13} {2}{3}{123} {2}{23}{123}
{2}{12}{13} {3}{12}{123}
{2}{12}{23} {3}{13}{123}
{2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
(End)
Covers with any number of edges are counted by
A003465, unlabeled
A055621.
Connected graphs of this type are counted by
A057500, unlabeled
A001429.
This is the covering case of
A136556.
These set-systems have ranks
A367917.
-
Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024
A368186
Number of n-covers of an unlabeled n-set.
Original entry on oeis.org
1, 1, 2, 9, 87, 1973, 118827, 20576251, 10810818595, 17821875542809, 94589477627232498, 1651805220868992729874, 96651473179540769701281003, 19238331716776641088273777321428, 13192673305726630096303157068241728202, 31503323006770789288222386469635474844616195
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 set-systems:
{{1}} {{1},{2}} {{1},{2},{3}}
{{1},{1,2}} {{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
Covers with any number of edges are counted by
A003465, unlabeled
A055621.
Cf.
A000088,
A002494,
A006126,
A055130,
A133686,
A140638,
A305000,
A317795,
A326754,
A367901,
A367902,
A367903.
-
brute[m_]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}];
Table[Length[Union[First[Sort[brute[#]]]& /@ Select[Subsets[Rest[Subsets[Range[n]]],{n}], Union@@#==Range[n]&]]], {n,0,3}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t)={2^sum(j=1, #q, gcd(t, q[j])) - 1}
G(n,m)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, m, K(q,t)*x^t/t, O(x*x^m))); s+=permcount(q)*exp(g - subst(g,x,x^2))); s/n!)}
a(n)=if(n ==0, 1, polcoef(G(n,n) - G(n-1,n), n)) \\ Andrew Howroyd, Jan 03 2024
Showing 1-10 of 11 results.
Comments