A000622
Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are stereoisomers.
Original entry on oeis.org
0, 0, 0, 2, 4, 14, 34, 98, 270, 768, 2192, 6360, 18576, 54780, 162658, 486154, 1461174, 4413988, 13393816, 40807290, 124783604, 382842018, 1178140170, 3635626680, 11247841040, 34880346840, 108402132234, 337576497920, 1053229357732, 3291813720292, 10305275270364
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1930
- C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1106.
- C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1105. (Annotated scanned copy)
Additional comments from Bruce Corrigan, Nov 04 2002
A000623
Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are stereoisomers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 6, 18, 66, 208, 646, 1962, 5962, 18014, 54578, 165650, 504220, 1539330, 4713742, 14475936, 44578668, 137634872, 425970290, 1321323952, 4107268140, 12792332438, 39915708564, 124762612530, 390593588402, 1224681912368, 3845387953884, 12090382743374
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1930
- C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1106.
- C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1105. (Annotated scanned copy)
Additional comments from Bruce Corrigan, Nov 04 2002
A000624
Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are not stereoisomers.
Original entry on oeis.org
0, 0, 0, 1, 1, 3, 4, 9, 13, 26, 40, 74, 118, 210, 342, 595, 981, 1684, 2798, 4763, 7951, 13469, 22548, 38082, 63862, 107666, 180740, 304382, 511292, 860504, 1445998, 2432665, 4088805, 6877172, 11560684, 19441791, 32684789, 54961955, 92404472, 155377371, 261235027
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..3000
- C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1106.
- C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1105. (Annotated scanned copy)
Additional comments from Bruce Corrigan, Nov 04 2002
A002094
Number of unlabeled connected loop-less graphs on n nodes containing exactly one cycle (of length at least 2) and with all nodes of degree <= 4.
Original entry on oeis.org
0, 1, 2, 5, 10, 25, 56, 139, 338, 852, 2145, 5513, 14196, 36962, 96641, 254279, 671640, 1781840, 4742295, 12662282, 33898923, 90981264, 244720490, 659591378, 1781048728, 4817420360, 13050525328, 35405239155, 96180222540, 261603173201, 712364210543
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..400
- R. J. Mathar, Illustration for graphs up to 6 carbons, 2018
- Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
- Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875.
- Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875. [Annotated scanned copy]
- Wikipedia, Alkene. Those with exactly one double carbon-to-carbon bond are covered by this sequence, the simplest being ethylene C_{2}H_{4}.
- Wikipedia, Cycloalkane. The simplest alicyclic compounds, which are the monocyclic saturated hydrocarbons with formula C_{n}H_{2n}, are covered by this sequence, the first example being cyclopropane C_{3}H_{6}.
-
# cycle index of cyclic group C_n
cycC_n := proc(n::integer,a)
local d ;
add(numtheory[phi](d)*a[d]^(n/d),d=numtheory[divisors](n)) ;
%/n ;
end proc:
# cycle index of dihedral group
cyD_n := proc(n::integer,a)
cycC_n(n,a)/2 ;
if type(n,'odd') then
%+ a[1]*a[2]^((n-1)/2)/2 ;
else
%+ ( a[1]^2*a[2]^((n-2)/2) +a[2]^(n/2) )/4 ;
end if;
end proc:
a000642 := [
1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925,
251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977,
550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259,
197818389539, 530775701520, 1426284383289] ;
g := [add(a000642[i]*x^i,i=1..nops(a000642)) ];
for i from 2 to nops(a000642) do
g := [op(g), subs(x=x^i,g[1]) ] ;
end do:
Nmax := nops(a000642) :
G := 0 ;
for c from 2 to Nmax do
f := cyD_n(c,g) ;
G := G+ taylor(f,x=0,Nmax) ;
end do:
taylor(G,x=0,Nmax) ;
gfun[seriestolist](%) ; # R. J. Mathar, Mar 17 2018
-
terms = 31;
cycC[n_, a_] := Sum[EulerPhi[d] a[[d]]^(n/d), {d, Divisors[n]}]/n;
cyD[n_, a_] := Module[{cc}, cc = (1/2)cycC[n, a]; If[OddQ[n], (1/2)a[[1]]* a[[2]]^((n-1)/2)+cc, (1/4)(a[[1]]^2 a[[2]]^((n-2)/2) + a[[2]]^(n/2)) + cc]];
B[] = 0; Do[B[x] = Normal[(1/6) x (2 B[x^3] + 3 B[x^2] B[x] + B[x]^3) + O[x]^terms+1], terms];
A[x_] = (1/2) x (B[x^2] + B[x]^2) + O[x]^(terms+2);
a000642 = Rest[CoefficientList[A[x], x]];
g = {Sum[x^i a000642[[i]], {i, 1, terms+1}]};
For[i = 2, i <= Length[a000642], i++, g = Flatten[Append[g, g[[1]] /. x -> x^i]]];
For[G = 0; c = 2, c < terms+1, c++, f = cyD[c, g]; G = Series[f, {x, 0, terms+1}] + G];
Most[Rest[CoefficientList[G, x]]] (* Jean-François Alcover, Mar 26 2020, after R. J. Mathar *)
A086194
Number of unrooted steric quartic trees with n (unlabeled) nodes and possessing a centroid; number of n carbon alkanes C(n)H(2n +2) with a centroid when stereoisomers are regarded as different.
Original entry on oeis.org
1, 0, 1, 1, 3, 2, 11, 9, 55, 70, 345, 494, 2412, 3788, 18127, 30799, 143255, 256353, 1173770, 2190163, 9892302, 19130814, 85289390, 169923748, 749329719, 1531701274, 6688893605, 13984116304, 60526543480, 129073842978
Offset: 1
Steve Strand (snstrand(AT)comcast.net), Aug 28 2003
For even n
A000628(n) = a(n) +
A086200(n/2), for odd n
A000628(n) = a(n), since every tree has either a centroid or a bicentroid but not both.
-
c[0] = 1; f[x_, m_] := Sum[c[k] x^k, {k, 0, m}]; coes[m_] := CoefficientList[Series[f[x, m] - 1 - (x*(f[x, m]^3 + 2*f[x^3, m])/3), {x, 0, m}], x] // Rest; r[x_, m_] := r[x, m] = (f[x, m] /. Solve[Thread[coes[m] == 0]] // First); b[m_] := CoefficientList[(1/12)*(r[x, m]^4 + 3*r[x^2, m]^2 + 8*r[x, m]*r[x^3, m]), x]; a[1]=1; a[2]=0; a[n_] := b[Quotient[n-1, 2]][[n]]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 30}] (* Jean-François Alcover, Dec 29 2014 *)
A000632
Number of esters with n carbon atoms up to structural isomerism.
Original entry on oeis.org
1, 2, 4, 9, 20, 45, 105, 249, 599, 1463, 3614, 9016, 22695, 57564, 146985, 377555, 974924, 2529308, 6589734, 17234114, 45228343, 119069228, 314368027, 832193902, 2208347917, 5873364623, 15653499416, 41800070483, 111821751649
Offset: 2
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008, Table of n, a(n) for n = 2..99
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- H. R. Henze and C. M. Blair, The number of structural isomers of the more important types of aliphatic compounds, J. Amer. Chem. Soc., 56 (1) (1934), 157-157.
- H. R. Henze and C. M. Blair, The number of structural isomers of the more important types of aliphatic compounds, J. Amer. Chem. Soc., 56 (1) (1934), 157-157. (Annotated scanned copy)
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 28.
- Wikipedia, Ester.
-
terms = 29; (* B = g.f. for A000625 *) B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^(terms+2) // Normal, terms+2];
A[x_] = 1*x*B[x]*(B[x] - 1) + O[x]^(terms+2);
Drop[CoefficientList[A[x], x], 2] (* Jean-François Alcover, Jan 10 2018 *)
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
A086200
Number of unrooted steric quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n +2) with a bicentroid when stereoisomers are regarded as different.
Original entry on oeis.org
1, 3, 15, 66, 406, 2775, 19900, 152076, 1206681, 9841266, 82336528, 702993756, 6105180250, 53822344278, 480681790786, 4342078862605, 39621836138886, 364831810979041, 3386667673687950, 31669036266203766
Offset: 1
Steve Strand (snstrand(AT)comcast.net), Aug 28 2003
For even n
A000628(n) =
A086194(n) + a(n/2), for odd n
A000628(n) =
A086194(n), since every tree has either a centroid or a bicentroid but not both.
A357538
a(n) = coefficient of x^n in A(x) such that A(x) = 1 + x*(2*A(x)^3 + A(x^3))/3.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 308, 1264, 5332, 22994, 100896, 449004, 2021712, 9193509, 42161222, 194768936, 905522052, 4233712140, 19893553120, 93894821200, 444952447944, 2116220266360, 10098086643002, 48330679370584, 231954451580616, 1116046254269592, 5382402925982248
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 308*x^6 + 1264*x^7 + 5332*x^8 + 22994*x^9 + 100896*x^10 + ...
where A(x) = 1 + x*(2*A(x)^3 + A(x^3))/3.
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 117*x^4 + 462*x^5 + 1895*x^6 + 7998*x^7 + 34491*x^8 + 151341*x^9 + 673506*x^10 + ...
-
A357538 := proc(n)
option remember ;
if n < 0 then
0;
elif n <= 1 then
1;
else
a := 0 ;
for j from 0 to n-1 do
a := a + procname(n-1-j)*add(procname(i)*procname(j-i),i=0..j)
end do:
a := 2*a/3 ;
if modp(n-1,3) = 0 then
a := a+procname((n-1)/3)/3 ;
end if;
a ;
end if ;
end proc:
seq(A357538(n),n=0..20) ; # R. J. Mathar, Dec 19 2022
-
{a(n) = my(A=1); for(i=1,n, A = 1 + x*(2*A^3 + subst(A,x,x^3))/3 +x*O(x^n)); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = if(n, my(A=vector(n+1)); A[1]=1; A[2]=1; for(k=1, n-1, A[k+2] = sum(j=1, k, 2*j*A[j+1]*(sum(i=0, k-j, A[i+1]*A[k-j-i+1])))/k + (1/3)*if(k%3, 0, A[k/3+1])); A[n+1], 1)} \\ after Jianing Song in A000625
for(n=0,30,print1(a(n),", "))
A375439
Expansion of g.f. A(x) satisfying A(x) = x + x^2 + (2*A(x)^3 + A(x^3))/3.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 20, 48, 117, 290, 734, 1880, 4868, 12730, 33556, 89072, 237904, 638873, 1723930, 4672008, 12710904, 34703894, 95054188, 261116816, 719223064, 1985934212, 5496123033, 15242821108, 42357113994, 117918233704, 328833828334, 918470764376, 2569238134248, 7197046596440
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 20*x^7 + 48*x^8 + 117*x^9 + 290*x^10 + 734*x^11 + 1880*x^12 + 4868*x^13 + 12730*x^14 + 33556*x^15 + ...
where A(x) = x + x^2 + (2*A(x)^3 + A(x^3))/3.
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 30*x^7 + 72*x^8 + 175*x^9 + 435*x^10 + 1101*x^11 + 2819*x^12 + 7302*x^13 + 19095*x^14 + 50332*x^15 + ...
Let B(x) be the series reversion of A(x), B(A(x)) = x, then B(x) begins
B(x) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 9*x^6 + 22*x^7 - 57*x^8 + 152*x^9 - 411*x^10 + 1119*x^11 - 3063*x^12 + 8436*x^13 - 23405*x^14 + 65452*x^15 + ...
SPECIFIC VALUES.
A(1/3) = 0.6046115975458048490061476622502250915528261368314569825...
where A(1/3) = 4/9 + (2*A(1/3)^3 + A(1/27))/3.
A(1/4) = 0.345218924086872316546119663994502755734706567000751...
A(1/5) = 0.253555647303827972834265469178971877524548605418192...
A(1/6) = 0.201444567662949882659512632012060178593075505771758...
A(1/7) = 0.167365364255434800795732539120237367470157092655512...
A(1/8) = 0.143236474390624253781858259379882809014038308155736...
A(1/27) = 0.03846365186207481603806452459437536518999937182129...
-
{a(n) = my(A=[0,1],Ax=x); for(i=1,n, A = concat(A,0); Ax=Ser(A);
A[#A] = polcoeff( x + x^2 + ( 2*Ax^3 + subst(Ax,x,x^3) )/3 - Ax,#A-1) );A[n+1]}
for(n=1,40,print1(a(n),", "))
A005627
Number of achiral planted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 8, 14, 23, 41, 69, 122, 208, 370, 636, 1134, 1963, 3505, 6099, 10908, 19059, 34129, 59836, 107256, 188576, 338322, 596252, 1070534, 1890548, 3396570, 6008908, 10801816, 19139155, 34422537, 61074583, 109894294, 195217253
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. W. Robinson, F. Harary, and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
- R. W. Robinson, F. Harary, and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
- Index entries for sequences related to rooted trees.
- Index entries for sequences related to trees.
-
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od:a[0]:=1: for n from 0 to 50 do a[n+1]:=sum(s[k]*a[n-2*k],k=0..floor(n/2)) od:seq(a[j],j=0..45); # here s[n]=A000625(n).
-
nmax = 36;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}];
a[0] = a[1] = 1;
Do[a[n+1] = Sum[s[k]*a[n-2*k], {k, 0, Floor[n/2]}], {n, 1, nmax}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
Comments