cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A296793 a(n) = n! * [x^n] exp(x)*(sec(x) + tan(x))^n.

Original entry on oeis.org

1, 2, 9, 67, 705, 9601, 160429, 3175579, 72638209, 1884974185, 54709142101, 1755923320559, 61748847320545, 2360991253910069, 97518218630249005, 4327060674324941491, 205272207854416078849, 10367500700785078039473, 555414837143457708584101, 31458118283019682610004279
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Crossrefs

Main diagonal of A322268.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x] (Sec[x] + Tan[x])^n, {x, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = Vec(serlaplace(exp(x)*(1/cos(x) + tan(x))^n))[n+1] \\ Iain Fox, Dec 20 2017

Formula

a(n) ~ c * d^n * n^n, where d = 1.12712316036287986633533456353714856005183790513784733... and c = 1.61865092826915643845148401952113086265743345... - Vaclav Kotesovec, Dec 21 2017

A317022 Expansion of e.g.f. sec(exp(x) - 1) + tan(exp(x) - 1).

Original entry on oeis.org

1, 1, 2, 6, 25, 132, 838, 6209, 52592, 501238, 5308295, 61839954, 785915626, 10820482467, 160436371306, 2548722840218, 43188812459297, 777586865332600, 14823480294719570, 298285781617278681, 6318170247815155180, 140520406400556170514, 3274091838364580459623
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Stirling transform of A000111.

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> add(b(j, 0)*Stirling2(n, j), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 19 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Sec[Exp[x] - 1] + Tan[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    e[n_] := e[n] = (2 I)^n If[EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]; a[n_] := a[n] = Sum[StirlingS2[n, k] e[k], {k, 0, n}]; Table[a[n], {n, 0, 22}]
  • Python
    from itertools import accumulate
    from sympy.functions.combinatorial.numbers import stirling
    def A317022(n): # generator of terms
        if n == 0: return 1
        blist, c = (0,1), 0
        for k in range(1,n+1):
            c += stirling(n,k)*blist[-1]
            blist = tuple(accumulate(reversed(blist),initial=0))
        return c # Chai Wah Wu, Apr 18 2023

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A000111(k).
a(n) ~ n! * 4 / ((2+Pi) * (log(1+Pi/2))^(n+1)). - Vaclav Kotesovec, Sep 25 2019

A348580 Expansion of e.g.f. exp(x) / (1 - sin(x)).

Original entry on oeis.org

1, 2, 5, 15, 53, 217, 1015, 5355, 31513, 204857, 1458875, 11299695, 94600373, 851419597, 8198959735, 84124450035, 916270051633, 10559066809937, 128362804540595, 1641730799916375, 22037407161945293, 309782122281453877, 4551072446448773455, 69747642031977698715
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 24 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> add(binomial(n, k)*b(k+1, 0), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 24 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x]/(1 - Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(x='x+O('x^40)); Vec(serlaplace(exp(x)/(1-sin(x)))) \\ Michel Marcus, Oct 24 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A000111(k+1).
a(n) ~ 2^(n + 7/2) * n^(n + 3/2) / (Pi^(n + 3/2) * exp(n - Pi/2)). - Vaclav Kotesovec, Oct 25 2021

A059235 The array in A059219 read by antidiagonals in the direction in which it was constructed.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 3, 5, 0, 5, 8, 12, 15, 0, 15, 27, 39, 48, 55, 0, 55, 103, 152, 190, 221, 239, 0, 239, 460, 680, 871, 1025, 1137, 1199, 0, 1199, 2336, 3471, 4493, 5374, 6062, 6553, 6810, 0, 6810, 13363, 19903, 25958, 31351, 35884, 39399, 41847, 43108, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Examples

			The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
		

Crossrefs

Programs

  • Mathematica
    max = 10; t[0, 0] = 1; t[0, ?EvenQ] = 0; t[?OddQ, 0] = 0; t[n_, k_] /; OddQ[n+k](*up*):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n+k](*down*):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; Table[tn = Table[t[n-k, k], {k, 0, n}]; If[OddQ[n], tn, tn // Reverse] , {n, 0, max}] // Flatten (* Jean-François Alcover, Nov 20 2012 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 24 2001

A059505 Transform of A059502 applied to sequence 2,3,4,...

Original entry on oeis.org

2, 5, 14, 40, 114, 323, 910, 2551, 7120, 19796, 54852, 151525, 417434, 1147145, 3145394, 8606848, 23507190, 64093031, 174474790, 474261691, 1287398452, 3490267820, 9451319304, 25565098825, 69080289074
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The second row of the array A059503.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-11,6,-1},{2,5,14,40}, 50] (* or *) Rest[CoefficientList[Series[x*(2 - 7*x + 6*x^2 - x^3)/(1 - 3*x + x^2)^2, {x,0,50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(2-7*x+6*x^2-x^3)/(1-3*x+x^2)^2) \\ G. C. Greubel, Sep 10 2017

Formula

G.f.: x*(2 - 7*x + 6*x^2 - x^3)/(1 - 3*x + x^2)^2.
From G. C. Greubel, Sep 10 2017: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
a(n) = ((3 - n)*Fibonacci(2*n) + (5 + 3*n)*Fibonacci(2*n - 1))/5. (End)

A059506 Transform of A059502 applied to sequence 3,4,5,...

Original entry on oeis.org

3, 7, 19, 53, 148, 412, 1143, 3161, 8717, 23977, 65798, 180182, 492459, 1343563, 3659623, 9953117, 27031768, 73320496, 198632607, 537507677, 1452978593, 3923762257, 10586222474, 28536313898, 76859031123
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The third row of the array A059503.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-11,6,-1},{3,7,19,53},30] (* Harvey P. Dale, Jul 30 2015 *)
    Rest[CoefficientList[Series[x*(1 - x)*(2*x^2 - 8*x + 3)/(x^2 - 3*x + 1)^2, {x,0,50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(x*(1-x)*(2*x^2-8*x+3)/(x^2-3*x+1)^2 + O(x^30)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(1-x)*(2*x^2-8*x+3)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) + (10 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017

A059507 Transform of A059502 applied to sequence 4,5,6,...

Original entry on oeis.org

4, 9, 24, 66, 182, 501, 1376, 3771, 10314, 28158, 76744, 208839, 567484, 1539981, 4173852, 11299386, 30556346, 82547961, 222790424, 600753663, 1618558734, 4357256694, 11721125644, 31507528971, 84637773172
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The fourth row of the array A059503.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(1 - x)*(3*x^2 - 11*x + 4)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) + (15 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017

A059508 Transform of A059502 applied to sequence 5,6,7,...

Original entry on oeis.org

5, 11, 29, 79, 216, 590, 1609, 4381, 11911, 32339, 87690, 237496, 642509, 1736399, 4688081, 12645655, 34080924, 91775426, 246948241, 663999649, 1784138875, 4790751131, 12856028814, 34478744044, 92416515221
Offset: 1

Views

Author

Floor van Lamoen, Jan 19 2001

Keywords

Comments

The fifth row of the array A059503.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(1-x)*(4*x^2 - 14*x + 5)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    Vec(-x*(x-1)*(4*x^2-14*x+5)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017

Formula

From Colin Barker, Nov 30 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: x*(1-x)*(4*x^2-14*x+5)/(x^2-3*x+1)^2. (End)
a(n) = ((3 - n)*Fibonacci(2*n) + (20 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017

A059575 The array described in A059513 read by antidiagonals in the direction of construction.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 13, 19, 23, 1, 48, 87, 107, 116, 1, 243, 458, 635, 708, 736, 1, 1517, 2967, 4239, 5163, 5533, 5659, 1, 11562, 22824, 33291, 41772, 47733, 50031, 50796, 1, 103125, 204598, 301161, 385422, 452016, 497789, 515254, 521040
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Crossrefs

Extensions

Sequence contained two errors corrected by N. J. A. Sloane, Jun 14 2005

A292759 Expansion of e.g.f. exp(x)*(tan x + sec x)^3.

Original entry on oeis.org

1, 4, 16, 67, 304, 1519, 8386, 51007, 340024, 2469859, 19438606, 164899447, 1500636844, 14587478299, 150891959026, 1655133221887, 19192311085264, 234597922978339, 3015167371458646, 40651421300224327, 573707768015267284, 8458761578948943979, 130059537979390701466
Offset: 0

Views

Author

N. J. A. Sloane, Sep 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x]*(Tan[x]+Sec[x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 02 2019 *)

Formula

a(n) ~ 2^(n + 11/2) * n^(n + 5/2) / (Pi^(n + 5/2) * exp(n - Pi/2)). - Vaclav Kotesovec, Jun 02 2019
Previous Showing 21-30 of 37 results. Next