cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A322268 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x)*(sec(x) + tan(x))^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 9, 1, 1, 5, 16, 29, 24, 1, 1, 6, 25, 67, 105, 77, 1, 1, 7, 36, 129, 304, 433, 294, 1, 1, 8, 49, 221, 705, 1519, 2029, 1309, 1, 1, 9, 64, 349, 1416, 4145, 8386, 10709, 6664, 1, 1, 10, 81, 519, 2569, 9601, 26385, 51007, 63025, 38177, 1, 1, 11, 100, 737, 4320, 19777, 69406, 181969, 340024, 409713, 243034, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k + 1)^2*x^2/2! + (k^3 + 3*k^2 + 4*k + 1)*x^3/3! + (k^4 + 4*k^3 + 10*k^2 + 8*k + 1)*x^4/4! + ...
Square array begins:
  1,   1,    1,     1,     1,     1,  ...
  1,   2,    3,     4,     5,     6,  ...
  1,   4,    9,    16,    25,    36,  ...
  1,   9,   29,    67,   129,   221,  ...
  1,  24,  105,   304,   705,  1416,  ...
  1,  77,  433,  1519,  4145,  9601,  ...
		

Crossrefs

Columns k=0..3 give A000012, A000667, A292756, A292759.
Main diagonal gives A296793.
Cf. A322267.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x] (Sec[x] + Tan[x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(x)*(sec(x) + tan(x))^k.

A059234 The array in A059216 read by antidiagonals in the direction in which it was constructed.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 6, 10, 14, 1, 15, 26, 37, 45, 1, 46, 84, 121, 150, 169, 1, 170, 321, 471, 592, 686, 740, 1, 741, 1428, 2111, 2704, 3183, 3532, 3721, 1, 3722, 7255, 10777, 13953, 16685, 18826, 20347, 21142, 1, 21143, 41491, 61798, 80598, 97345, 111419
Offset: 1

Views

Author

Floor van Lamoen, Jan 18 2001

Keywords

Examples

			The array begins
   1  2  1 14  1 ...
   1  3 10 15 ...
   5  6 26 ...
   1 37 ...
  45 ...
		

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 23 2001

A059237 Variation of Boustrophedon transform described in A059219 applied to sequence 0,1,0,0,0,....

Original entry on oeis.org

0, 1, 2, 5, 16, 59, 258, 1296, 7362, 46609, 325147, 2477212, 20460278, 182076531, 1736623109, 17672266151, 191111489038, 2188592796698, 26458831601847, 336735773968857, 4500142285227330, 63007188219787855, 922312862937555109
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2001

Keywords

Crossrefs

Programs

  • Maple
    aaa := proc(m,n) option remember; local i,j,r,s,t1; if m=0 and n=0 then RETURN(0); fi; if m=1 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(0); fi; if m = 0 and n mod 2 = 0 then RETURN(0); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1,n-1); for j from 0 to n-1 do t1 := t1+aaa(m,j); od: else t1 := aaa(m-1,n+1); for j from 0 to m-1 do t1 := t1+aaa(j,n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n,0), aaa(n-1,1), aaa(n-2,2), ..., aaa(0,n)

A059578 Variation of Boustrophedon transform applied to 1,1,1,1,... Fill an array by diagonals, all in the 'up' direction. The first column is 1,1,1,1,.... For the next element of a diagonal, add to the previous element the elements of the row and the column the new element is in. The first row gives a(n).

Original entry on oeis.org

1, 2, 7, 30, 147, 792, 4559, 27500, 171645, 1099388, 7185101, 47724494, 321225165, 2186177302, 15018795171, 104011496474, 725373340023, 5089785834004, 35907469451787, 254541483884544, 1812185157383017, 12951828431246472, 92893383046741073, 668383820775639066
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Examples

			The array begins
1 2 7 30 ...
1 4 20 ...
1 8 ...
1 ...
		

Crossrefs

Extensions

More terms from Sean A. Irvine, Sep 29 2022

A261880 Array of higher-order differences of the sequence (-1)^n*A000111(n) read by downward antidiagonals.

Original entry on oeis.org

1, -1, -2, 1, 2, 4, -2, -3, -5, -9, 5, 7, 10, 15, 24, -16, -21, -28, -38, -53, -77, 61, 77, 98, 126, 164, 217, 294, -272, -333, -410, -508, -634, -798, -1015, -1309, 1385, 1657, 1990, 2400, 2908, 3542, 4340, 5355, 6664
Offset: 0

Views

Author

Paul Curtz, Jul 10 2016

Keywords

Comments

Difference array of (-1)^n*A000111(n):
1, -1, 1, -2, 5, ...
-2, 2, -3, 7,...
4, -5, 10, ...
-9, 15, ...
24, ... .
First column:(-1)^n*A000667(n).
Antidiagonal sums: b(n) = 1, -3, 7, -19, 61, -233, 1037, -5279, 30241, ..., i.e., row sums of the triangle.
Any triangle with entries T(n, m) built from some sequence in column m=0, and the recurrence T(n, m) = T(n, m-1) - T(n-1, m-1) for m >= 1, has the property that the new triangle t(n, m) = T(n+1, m+1) - T(n+1, m), 0 <= m <= n, equals -T(n, m). See the question in the example. - Wolfdieter Lang, Aug 08 2016

Examples

			The triangle T(n, m) begins:
n\m  0   1   2   3   4   5 ...
0:   1
1:  -1  -2
2:   1   2   4
3:  -2  -3  -5  -9
4:   5   7  10  15  24,
5: -16 -21 -28 -38 -53 -77
...
Triangle of differences of the row entries of the preceding triangle starting with row n=1:
n\m  0   1    2   3   4 ...
0:  -1
1:   1   2
2:  -1  -2   -4
3:   2   3    5   9
4:  -5  -7  -10 -15 -24
... .
This is the negative of the first triangle. Are there other sequences with the same property?
		

Crossrefs

Formula

Recurrence: T(n, 0) = (-1)^n*A000111(n), n >= 0. T(n, m) = T(n, m-1) - T(n-1, m-1), m >= 1. (from the fact that the differences of the rows, starting with n = 1 produce the negative of the triangle. See the example and a comment). - Wolfdieter Lang, Aug 08 2016

Extensions

Edited by Wolfdieter Lang, Aug 08 2016

A352906 Expansion of e.g.f. sinh(x) / (1 - sin(x)).

Original entry on oeis.org

0, 1, 2, 7, 24, 101, 472, 2507, 14784, 96361, 687392, 5332207, 44694144, 402663821, 3880880512, 39848805107, 434306095104, 5007757446481, 60907946680832, 779345606053207, 10465549612529664, 147168296199468341, 2162785172079204352, 33155700678534788507, 529311396083558989824
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Sinh[x]/(1 - Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * A000111(n-2*k).
a(n) ~ sinh(Pi/2) * 2^(n + 7/2) * n^(n + 3/2) / (exp(n) * Pi^(n + 3/2)). - Vaclav Kotesovec, Apr 07 2022

A363394 Triangle read by rows. T(n, k) = A081658(n, k) + A363393(n, k) for k > 0 and T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, -1, 1, 3, -3, -2, 1, 4, -6, -8, 5, 1, 5, -10, -20, 25, 16, 1, 6, -15, -40, 75, 96, -61, 1, 7, -21, -70, 175, 336, -427, -272, 1, 8, -28, -112, 350, 896, -1708, -2176, 1385, 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936
Offset: 0

Views

Author

Peter Luschny, Jun 06 2023

Keywords

Examples

			The triangle T(n, k) begins:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  -1;
  [3] 1, 3,  -3,   -2;
  [4] 1, 4,  -6,   -8,   5;
  [5] 1, 5, -10,  -20,  25,   16;
  [6] 1, 6, -15,  -40,  75,   96,   -61;
  [7] 1, 7, -21,  -70, 175,  336,  -427,  -272;
  [8] 1, 8, -28, -112, 350,  896, -1708, -2176,  1385;
  [9] 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936;
		

Crossrefs

Variants (row reversed): A109449, A247453.
Cf. A081658 (signed secant part), A363393 (signed tangent part), A000111 (main diagonal), A122045, A155585 (aerated main diagonal), A000667, A062162 (row sums of signless variant).

Programs

  • Maple
    # Variant, computes abs(T(n, k)):
    P := n -> n!*coeff(series((sec(y) + tan(y))/exp(x*y), y, 24), y, n):
    seq(print(seq((-1)^(n - k)*coeff(P(n), x, n - k), k = 0..n)), n = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k == n:
            p = k % 2
            return p - sum(T(n, j) for j in range(p, n - 1, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10): print([T(n, k) for k in range(n + 1)])

Formula

|T(n, k)| = (-1)^(n - k) * n! * [x^(n - k)][y^n] (sec(y) + tan(y)) / exp(x*y).
T(n, k) = [x^(n - k)] -2^(k-(0^k))*(Euler(k, 0) + Euler(k, 1/2)) / (x-1)^(k + 1).
For a recursion see the Python program.
T(n, k) = [x^n] ((-1) + Sum_{j=0..n} binomial(n, j)*(Euler(j, 1) + Euler(j, 1/2))*(2*x)^j). - Peter Luschny, Nov 17 2024
Previous Showing 31-37 of 37 results.