cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 640 results. Next

A248934 Decimal expansion of 2^3217 - 1, the 18th Mersenne prime A000668(18).

Original entry on oeis.org

2, 5, 9, 1, 1, 7, 0, 8, 6, 0, 1, 3, 2, 0, 2, 6, 2, 7, 7, 7, 6, 2, 4, 6, 7, 6, 7, 9, 2, 2, 4, 4, 1, 5, 3, 0, 9, 4, 1, 8, 1, 8, 8, 8, 7, 5, 5, 3, 1, 2, 5, 4, 2, 7, 3, 0, 3, 9, 7, 4, 9, 2, 3, 1, 6, 1, 8, 7, 4, 0, 1, 9, 2, 6, 6, 5, 8, 6, 3, 6, 2, 0, 8, 6, 2, 0, 1, 2, 0, 9, 5, 1, 6, 8, 0, 0, 4, 8, 3, 4, 0, 6, 5, 5, 0
Offset: 969

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

The prime was found on September 8, 1957, by Hans Riesel, using BESK.

Examples

			25911708601320262777624676792244153094181888755312542730397492316187401...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248935 = A000668(19), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^3217-1));
    
  • Mathematica
    RealDigits[2^3217 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^3217-1)))

Formula

Equals 2^A000043(18) - 1.

A248935 Decimal expansion of 2^4253 - 1, the 19th Mersenne prime A000668(19).

Original entry on oeis.org

1, 9, 0, 7, 9, 7, 0, 0, 7, 5, 2, 4, 4, 3, 9, 0, 7, 3, 8, 0, 7, 4, 6, 8, 0, 4, 2, 9, 6, 9, 5, 2, 9, 1, 7, 3, 6, 6, 9, 3, 5, 6, 9, 9, 4, 7, 4, 9, 9, 4, 0, 1, 7, 7, 3, 9, 4, 7, 4, 1, 8, 8, 2, 6, 7, 3, 5, 2, 8, 9, 7, 9, 7, 8, 7, 0, 0, 5, 0, 5, 3, 7, 0, 6, 3, 6, 8, 0, 4, 9, 8, 3, 5, 5, 1, 4, 9, 0, 0, 2, 4, 4, 3, 0, 3
Offset: 1281

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

This prime and the 20th Mersenne prime were found in 1961 by Alexander Hurwitz, using IBM 7090.

Examples

			19079700752443907380746804296952917366935699474994017739474188267352897...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248936 = A000668(20).

Programs

  • Magma
    Reverse(Intseq(2^4253-1));
    
  • Mathematica
    RealDigits[2^4253 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^4253-1)))

Formula

Equals 2^A000043(19) - 1.

A248936 Decimal expansion of 2^4423 - 1, the 20th Mersenne prime A000668(20).

Original entry on oeis.org

2, 8, 5, 5, 4, 2, 5, 4, 2, 2, 2, 8, 2, 7, 9, 6, 1, 3, 9, 0, 1, 5, 6, 3, 5, 6, 6, 1, 0, 2, 1, 6, 4, 0, 0, 8, 3, 2, 6, 1, 6, 4, 2, 3, 8, 6, 4, 4, 7, 0, 2, 8, 8, 9, 1, 9, 9, 2, 4, 7, 4, 5, 6, 6, 0, 2, 2, 8, 4, 4, 0, 0, 3, 9, 0, 6, 0, 0, 6, 5, 3, 8, 7, 5, 9, 5, 4, 5, 7, 1, 5, 0, 5, 5, 3, 9, 8, 4, 3, 2, 3, 9, 7, 5, 4
Offset: 1332

Views

Author

Arkadiusz Wesolowski, Oct 17 2014

Keywords

Comments

The 19th Mersenne prime and this prime were found in 1961 by Alexander Hurwitz, using IBM 7090.

Examples

			28554254222827961390156356610216400832616423864470288919924745660228440...
		

Crossrefs

Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19).

Programs

  • Magma
    Reverse(Intseq(2^4423-1));
    
  • Mathematica
    RealDigits[2^4423 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    eval(Vec(Str(2^4423-1)))

Formula

Equals 2^A000043(20) - 1.

A133049 Squares of Mersenne primes A000668(n).

Original entry on oeis.org

9, 49, 961, 16129, 67092481, 17179607041, 274876858369, 4611686014132420609, 5316911983139663487003542222693990401, 383123885216472214589586755549637256619304505646776321
Offset: 1

Views

Author

Omar E. Pol, Oct 30 2007, Apr 23 2008

Keywords

Comments

Sum of last A000043(n) divisors of the n-th even perfect number. In other words; sum of divisors that are not powers of 2 of the n-th even perfect number, or sum of divisors that are multiples of the n-th Mersenne prime A000668(n) of the n-th even perfect number. See A139247 for more information.
See the structure of the divisors of perfect numbers in A135652, A135653, A135654 and A135655.

Examples

			a(3)=961 because the 3rd Mersenne prime is 31 and 31^2=961.
		

Crossrefs

Programs

  • Mathematica
    Select[2^Range[1000] - 1, PrimeQ]^2 (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    forprime(p=2, 1000, if(ispseudoprime(2^p-1), print1((2^p-1)^2", "))) \\ G. C. Greubel, Oct 03 2017

Formula

a(n) = A000668(n)^2

Extensions

More terms from Olaf Voß, Feb 13 2008

A138837 Non-Mersenne primes: A000040 \ A000668.

Original entry on oeis.org

2, 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2008

Keywords

Comments

Primes that are not Mersenne primes A000668.
Pandigital primes in base 2. (Pandigital interpreted as including all digits, not necessarily only once each.) - Franklin T. Adams-Watters, May 11 2011
Primes whose sum of divisors is not a power of 2. - Omar E. Pol, Dec 19 2016

Crossrefs

Programs

  • Mathematica
    max = 300; Complement[Prime[Range[PrimePi[max]]], 2^Range[Ceiling[Log[2, max]]] - 1] (* Alonso del Arte, Dec 30 2013 *)
  • PARI
    is_A138837(n)={isprime(n)&&1<M. F. Hasler, Feb 05 2014

Formula

A138837 = A000040 \ A000668. - M. F. Hasler, Feb 09 2014

Extensions

New name from Omar E. Pol, Jan 02 2014

A139295 a(n) = 2^(2p - 1)-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

31, 8191, 2305843009213693951, 14474011154664524427946373126085988481658748083205070504932198000989141204991
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 3) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)-1 = A139294(n)-1.

A139231 First differences of Mersenne primes A000668.

Original entry on oeis.org

4, 24, 96, 8064, 122880, 393216, 2146959360, 2305843007066210304, 618970017336847128235868160, 162258657859193720701440560726016, 170141021201192402518323912137873817600
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Examples

			a(1)=4 because A000668(1)=3 and A000668(2)=7 then 7-3 = 4.
		

Crossrefs

Programs

  • Mathematica
    A000668 := Select[2^Range[1000] - 1, PrimeQ]; Table[A000668[[n + 1]] - A000668[[n]], {n, 1, 10}] (* G. C. Greubel, Oct 03 2017 *)
    Differences[2^MersennePrimeExponent[Range[20]]-1] (* Harvey P. Dale, Mar 31 2022 *)
  • PARI
    a=0; b=0; forprime(p=1, 1e2, if(ispseudoprime(2^p-1) && a==0, a=2^p-1); if(ispseudoprime(2^p-1) && a!=0, b=2^p-1; if(a!=b, print1(b-a, ", ")); a=b)) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A000668(n+1) - A000668(n).

Extensions

a(8)-a(11) from Felix Fröhlich, Aug 12 2014

A139232 Second differences of Mersenne primes A000668.

Original entry on oeis.org

20, 72, 7968, 114816, 270336, 2146566144, 2305843004919250944, 618970015031004121169657856, 162258038889176383854312324857856, 170140858942534543324603210697313091584
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2008

Keywords

Comments

Second differences of even superperfect numbers, multiplied by 2 (see A139236).

Crossrefs

Programs

Formula

a(n) = A139236(n)*2.

Extensions

Terms a(7) - a(10) added by G. C. Greubel, Oct 03 2017

A139296 a(n) = 2^(2p - 1)/2, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

16, 4096, 1152921504606846976, 7237005577332262213973186563042994240829374041602535252466099000494570602496
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

a(5) has 4931 digits and is too large to include. - R. J. Mathar, May 30 2008

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 4); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/2.

Extensions

One more term from R. J. Mathar, May 30 2008

A139297 a(n) = 2^(2p - 1)/2-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

15, 4095, 1152921504606846975, 7237005577332262213973186563042994240829374041602535252466099000494570602495
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 4) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/2-1 = A139296(n)-1.

Extensions

a(4) from Amiram Eldar, Jul 10 2025
Previous Showing 11-20 of 640 results. Next