cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 640 results. Next

A145041 Primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 31 mod 6!.

Original entry on oeis.org

5, 17, 89, 521, 4253, 9689, 9941, 11213, 19937, 21701, 859433, 1398269, 2976221, 3021377, 6972593, 32582657, 43112609, 57885161
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first two) are congruent to 31, 127, 271, 607 mod 6!. This sequence is a subsequence of A000043.

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a
    Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 720] == 32 &] (* Amiram Eldar, Oct 19 2024 *)

Extensions

a(18) from Amiram Eldar, Oct 19 2024

A145042 Primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 127 mod 6!.

Original entry on oeis.org

7, 19, 31, 127, 607, 1279, 2203, 4423, 110503, 216091, 1257787, 20996011, 24036583
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first two) are congruent to 31, 127, 271, 607 mod 6!. This sequence is a subsequence of A000043.

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 127, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a

A242998 Number of integers k such that R = (2^k*Q - Q - 1)/(Q + 1 - 2^k) is a prime number, when Q = A000668(n) is the n-th Mersenne prime.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

M. F. Hasler, Aug 17 2014

Keywords

Comments

Related to the search of large primitive weird numbers: Kravitz has shown that 2^(k-1)*Q*R is a primitive weird number (cf. A002975) when Q > 2^k and R = (2^k*Q - Q - 1)/(Q + 1 - 2^k) both are prime. Here we count such primes for the special case where Q = 2^p - 1 is a Mersenne prime, p=A000043(n). For such Q one has R = 2^k - 1 + (2^k - 2)/(2^(p-k) - 1).
See A242025 for the resulting primes R, which however are there not listed in order of the p's.
This sequence gives the row lengths for the table A243003 whose rows hold the k-values leading to prime R, for a given Mersenne prime.

Examples

			For given p=A000043(n), the following k's yield a prime R:
p : k's (and resulting primes R, Q=2^p-1 and/or weird W=2^(k-1)*Q*R)
2 : -
3 : 2 (R=5, Q=7, W=70)
5 : 4 (R=29, Q=31, W=7192)
7 : 4 (R=17, Q=127, W=17272), 5 (R=41, Q=127, W=83312)
13 : 11 (R=2729, Q=8191, W=22889716736)
17 : 13 (R=8737, Q=131071, W=4690605371392)
19 : 16 (R=74897, W=1286718208049152), 17 (R=174761, W=6004730783793152)
31 : 16 (R=65537, W=2^15*(2^31-1)*R), 29 (R=715827881, W=2^28*(2^31-1)*R)
61 : 57 (R=153722867280912929, W=2^56*(2^61-1)*R)
89 : 78 (R=302379100949042568368129, W=2^77*(2^89-1)*R)
107 through 86243 : none.
107 through 3021377: none. _Robert Price_, Sep 05 2019
The present sequence lists the number of k's in each line.
		

Crossrefs

Cf. A258882 (PWN of the form 2^k*p*q), A000043 (Mersenne prime exponents), A000668.
Cf. A242025 (the primes R).
Row lengths of A242999 (values of p) and A243003 (values of k), cf. A242993 for the smallest possible k.
See also A320875 for more general solutions to R = (MQ-1)/(Q-M) = prime.

Programs

  • Mathematica
    A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
       1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
       21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
       1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
       24036583, 25964951, 30402457, 32582657, 37156667, 42643801,
       43112609};
    lst = {};
    For[i = 1, i <= 28, i++,
      p = A000043[[i]];
      kc = 0;
      For[k = 1, k < p, k++,
       r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);
       If[! IntegerQ[r], Continue[]];
       If[PrimeQ[r], kc++]];
      AppendTo[lst, kc]];
    lst (* Robert Price, Sep 05 2019 *)
  • PARI
    A242998(n,p=A000043[n])={sum(k=p\2+1, p-1, Mod(2, 2^(p-k)-1)^k==2 && ispseudoprime(2^k-1+(2^k-2)/(2^(p-k)-1)))}

Extensions

Typo in definition corrected by Jens Kruse Andersen, Aug 27 2014
a(29)-a(37) from Robert Price, Sep 05 2019

A253851 Mersenne primes (A000668) of the form 2^sigma(n) - 1 for some n.

Original entry on oeis.org

7, 127, 8191, 2147483647, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Jaroslav Krizek, Jan 16 2015

Keywords

Comments

Numbers n such that 2^sigma(n) - 1 is a Mersenne primes are given in A253849.
Sequence of corresponding values of sigma(n) are given in A253850 and each term of this sequence must be a prime from the sequence of Mersenne exponents (A000043).
If a(6) exists, it must be bigger than A000668(43) = 2^30402457-1.

Examples

			Mersenne prime 2147483647 is in the sequence because there are two numbers n (16 and 25) with 2^sigma(n) - 1 = 2^31 - 1 = 2147483647.
		

Crossrefs

Programs

  • Magma
    Set(Sort([(2^SumOfDivisors(n))-1: n in[1..10000] | IsPrime((2^SumOfDivisors(n))-1)]));

A080172 Final digit of n-th Mersenne prime A000668(n).

Original entry on oeis.org

3, 7, 1, 7, 1, 1, 7, 7, 1, 1, 7, 7, 1, 7, 7, 7, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7, 1, 7, 7, 1, 7, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 7, 1, 1, 1
Offset: 1

Views

Author

Mark Dowdeswell, Feb 04 2003

Keywords

Comments

Distribution of final digit for Mersenne primes appears (naturally) to be different from distribution for regular primes. Unconfirmed 49th, 50th and 51st digits in sequence are 1, 1, 1 (awaiting confirmation of 49th, 50th and 51st Mersenne primes).

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 16.

Crossrefs

Programs

  • Maple
    (Maple code from N. J. A. Sloane) # let s1 := list of terms in A000043
    f:=n->if n mod 4 = 0 then 4 else n mod 4; fi; map(x->2^f(x)-1,s1);
  • Mathematica
    Mod[2^MersennePrimeExponent[Range[48]]-1,10] (* Harvey P. Dale, Aug 09 2023; updated by Mark Dowdeswell, Sep 16 2024 *)

Extensions

Updated by N. J. A. Sloane, Apr 01 2008
a(40)-a(47) from Ivan Panchenko, Apr 11 2018
a(48) from Mark Dowdeswell, Sep 16 2024

A135613 Initial digit of Mersenne primes A000668.

Original entry on oeis.org

3, 7, 3, 1, 8, 1, 5, 2, 2, 6, 1, 1, 6, 5, 1, 1, 4, 2, 1, 2, 4, 3, 2, 4, 4, 4, 8, 5, 5, 5, 7, 1, 1, 4, 8, 6, 1, 4, 9, 1, 2, 1, 3, 1, 2, 1, 3, 5
Offset: 1

Views

Author

Omar E. Pol, Mar 01 2008

Keywords

Examples

			a(4) = 1 because the 4th Mersenne prime A000668(4) is 127 and the initial digit of 127 is 1.
		

Crossrefs

Programs

  • Mathematica
    lst = {* the list of terms in A000043 *}; f[n_] := Block[{pn = 2^n - 1}, Quotient[pn, 10^Floor[ Log[10, pn]] ]]; f@# & /@ lst (* Robert G. Wilson v, Apr 01 2008 *)
    IntegerDigits[#][[1]]&/@(2^#-1&/@MersennePrimeExponent[Range[47]]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 04 2019 *)

Formula

a(n) = A000030(A000668(n)). - Omar E. Pol, Jul 04 2019

Extensions

More terms from Robert G. Wilson v, Apr 01 2008
a(40)-a(44) from David Radcliffe, Jan 21 2016
a(45)-a(47) from Ivan Panchenko, Apr 11 2018
a(48) from Amiram Eldar, Oct 16 2024

A138816 Concatenation of initial digit of n-th Mersenne prime A000668(n), initial digit of n-th even superperfect number A061652(n) and initial digit of n-th perfect number A000396(n).

Original entry on oeis.org

326, 742, 314, 168, 843, 168, 521, 212, 212, 631, 181, 181, 632, 521, 155
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Comments

Also, concatenation of initial digit of n-th Mersenne prime A000668(n), initial digit of n-th superperfect number A019279(n) and initial digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A135613(n), A138124(n) and A135617(n).

Crossrefs

Extensions

a(13)-a(15) from Robert Price, Jun 16 2019

A138864 First 3 digits of n-th Mersenne prime A000668(n).

Original entry on oeis.org

3, 7, 31, 127, 819, 131, 524, 214, 230, 618, 162, 170, 686, 531, 104, 147, 446, 259, 190, 285, 478, 346, 281, 431, 448, 402, 854, 536, 521, 512, 746, 174, 129, 412, 814, 623, 127, 437, 924, 125, 299, 122, 315, 124, 202, 169, 316
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Crossrefs

Extensions

a(40)-a(47) from Ivan Panchenko, Aug 03 2018

A171255 Primes which are the average of two distinct Mersenne primes (A000668).

Original entry on oeis.org

5, 17, 19, 67, 79, 4099, 4111, 4159, 65537, 65539, 65551, 65599, 262147, 266239, 1073741827, 1073741839, 1073807359, 309485009821345068724785151
Offset: 1

Views

Author

M. F. Hasler, Mar 06 2010

Keywords

Comments

The subsequence of primes in A171253, which equals A171254 minus its subsequence A000668.

Examples

			a(n) = A171253(n) for n=1,2,3, since all of these terms are prime. The term A171253(4) = 65 is the first element of A171252 to be composite, and therefore not included in the present sequence A171255.
		

Crossrefs

Cf. A171252, A171254 (includes elements of A000668).

Programs

  • PARI
    select(isprime, concat(vector(#A00668,i,vector(i-1,j,A00668[i]+A00668[j])))/2) /* having defined A00668 as vector with initial terms of A000668. In PARI version 2.4.2, the syntax select( concat(...), x->isprime(x)) must be used. */

Formula

A117853 Decimal expansion of 2^30402457-1, the 43th Mersenne prime A000668(43).

Original entry on oeis.org

3, 1, 5, 4, 1, 6, 4, 7, 5, 6, 1, 8, 8, 4, 6, 0, 8, 0, 9, 3, 6, 3, 0, 3, 0, 2, 8, 6, 6, 4, 5, 4, 5, 1, 7, 0, 1, 2, 6, 5, 1, 9, 6, 5, 6, 2, 6, 2, 3, 2, 3, 8, 7, 0, 3, 1, 6, 3, 2, 3, 7, 1, 0, 7, 9, 5, 1, 3, 5, 3, 8, 7, 4, 4, 9, 0, 0, 6, 9, 3, 4, 6, 2, 0, 9, 4, 3, 8, 6, 2, 9, 4, 7, 5, 1, 7, 0, 2, 9, 6, 6, 3, 6, 2, 3
Offset: 9152052

Views

Author

Jacob Vecht, May 02 2006

Keywords

Comments

The decimal expansion of 2^30402457-1. This is the 43rd known Mersenne prime, found at Dec 15, 2005 by the GIMPS project / Curtis Cooper and Steven Boone. The number has 9152052 digits; as a string, it occupies 9.24 MB.

Examples

			A000668(43) = 3154164756188460809363030286645451701265196562623...7411652943871.
		

Crossrefs

Cf. A000043 (Mersenne exponents), A000668.

Programs

  • Mathematica
    RealDigits[10^N[30402457Log[10, 2] - 9152051, 111]][[1]]

Extensions

Edited by Georg Fischer, Jul 19 2021
Previous Showing 51-60 of 640 results. Next