cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A138817 Concatenation of final digit of n-th Mersenne prime A000668(n), final digit of n-th even superperfect number A061652(n) and final digit of n-th perfect number A000396(n).

Original entry on oeis.org

326, 748, 166, 748, 166, 166, 748, 748, 166, 166, 748, 748, 166, 748, 748, 748, 166, 166, 166, 748, 166, 166, 166, 166, 166, 166, 166, 748, 748, 166, 748, 748, 166, 748, 166, 166, 166, 166, 166
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Comments

Also, concatenation of final digit of n-th Mersenne prime A000668(n), final digit of n-th superperfect number A019279(n) and final digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of n-th term of A080172, A138125(n) and A094540(n).
a(1)=326. For n>1 a(n) is equal to 166 or 748, only.

Crossrefs

A138841 Concatenation of initial and final digit of n-th Mersenne prime A000668(n).

Original entry on oeis.org

33, 77, 31, 17, 81, 11, 57, 27, 21, 61, 17, 17, 61, 57, 17, 17, 41, 21, 11, 27, 41, 31, 21, 41, 41, 41, 81, 57, 57, 51, 77, 17, 11, 47, 81, 61, 11, 41, 91, 17, 27, 17, 31, 11, 27, 11, 31
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Examples

			a(5)=81 because the 5th Mersenne prime is 8191, A000668(5)=8191.
		

Crossrefs

Formula

a(n) = A073729(A000668(n)). - Michel Marcus, Apr 17 2018

Extensions

a(40)-a(47) from Ivan Panchenko, Apr 17 2018

A080173 Final 2 digits of n-th Mersenne prime A000668(n).

Original entry on oeis.org

3, 7, 31, 27, 91, 71, 87, 47, 51, 11, 27, 27, 51, 27, 87, 7, 51, 71, 91, 7, 11, 51, 91, 71, 51, 11, 71, 7, 7, 11, 47, 87, 91, 27, 11, 51, 71, 91, 71, 47, 7, 47, 71, 71, 27, 51, 11, 51
Offset: 1

Views

Author

Mark Dowdeswell, Feb 04 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[2^MersennePrimeExponent[Range[48]]-1, 100] (* Mark Dowdeswell, Sep 16 2024 *)

Extensions

Offset corrected by Arkadiusz Wesolowski, Jan 26 2012
a(39)-a(47) from Ivan Panchenko, Apr 11 2018
a(48) from Mark Dowdeswell, Sep 16 2024

A135613 Initial digit of Mersenne primes A000668.

Original entry on oeis.org

3, 7, 3, 1, 8, 1, 5, 2, 2, 6, 1, 1, 6, 5, 1, 1, 4, 2, 1, 2, 4, 3, 2, 4, 4, 4, 8, 5, 5, 5, 7, 1, 1, 4, 8, 6, 1, 4, 9, 1, 2, 1, 3, 1, 2, 1, 3, 5
Offset: 1

Views

Author

Omar E. Pol, Mar 01 2008

Keywords

Examples

			a(4) = 1 because the 4th Mersenne prime A000668(4) is 127 and the initial digit of 127 is 1.
		

Crossrefs

Programs

  • Mathematica
    lst = {* the list of terms in A000043 *}; f[n_] := Block[{pn = 2^n - 1}, Quotient[pn, 10^Floor[ Log[10, pn]] ]]; f@# & /@ lst (* Robert G. Wilson v, Apr 01 2008 *)
    IntegerDigits[#][[1]]&/@(2^#-1&/@MersennePrimeExponent[Range[47]]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 04 2019 *)

Formula

a(n) = A000030(A000668(n)). - Omar E. Pol, Jul 04 2019

Extensions

More terms from Robert G. Wilson v, Apr 01 2008
a(40)-a(44) from David Radcliffe, Jan 21 2016
a(45)-a(47) from Ivan Panchenko, Apr 11 2018
a(48) from Amiram Eldar, Oct 16 2024

A138819 Concatenation of final digit of n-th even superperfect number A061652(n), final digit of n-th Mersenne prime A000668(n) and final digit of n-th perfect number A000396(n).

Original entry on oeis.org

236, 478, 616, 478, 616, 616, 478, 478, 616, 616, 478, 478, 616, 478, 478, 478, 616, 616, 616, 478, 616, 616, 616, 616, 616, 616, 616, 478, 478, 616, 478, 478, 616, 478, 616, 616, 616, 616, 616
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Also, concatenation of final digit of n-th superperfect number A019279(n), final digit of n-th Mersenne prime A000668(n) and final digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A138125(n), A080172(n) and A094540(n).
For n>1 a(n) is equal to 478 or 616, only.
Note that, for n>1: if the final digit of n-th Mersenne prime A000668(n) is 1 then the final digit of n-th even superperfect number is 6 and the final digit of n-th perfect number also is 6, otherwise the final digit of n-th even superperfect number is 4 and the final digit of n-th perfect number is 8 (see example).

Examples

			===================================================================
.................. SHORT TABLE OF FINAL DIGITS ...................
===================================================================
... Final digit of even ..... Final digit of ..... Final digit of
... superperfect number ..... Mersenne prime ..... perfect number
........ A061652 ............... A000668 ............. A000396
===================================================================
n = 1 ..... (2) ................... (3) .................. (6)
n > 1 ..... (4) ................... (7) .................. (8)
n > 1 ..... (6) ................... (1) .................. (6)
		

Crossrefs

A267317 a(n) = final digit of 2^n-1.

Original entry on oeis.org

0, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5, 1, 3, 7, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

Decimal expansion of 25/1818.
Period 4: repeat [1, 3, 7, 5] for n > 0.

Crossrefs

Programs

  • Magma
    [0] cat &cat[[1, 3, 7, 5]^^25]; // Bruno Berselli, Jan 13 2016
    
  • Maple
    A267317:=n->(2^n-1) mod 10: seq(A267317(n), n=0..150); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Table[Mod[2^n - 1, 10], {n, 0, 120}]
  • PARI
    a(n) = if(n==0, 0, if(n%4==0, 5, if(n%4==1, 1, if(n%4==2, 3, if(n%4==3, 7))))) \\ Felix Fröhlich, Jan 19 2016
    
  • PARI
    a(n) = lift(Mod(2^n-1, 10)) \\ Felix Fröhlich, Jan 19 2016

Formula

G.f.: x*(1 + 2*x + 5*x^2)/(1 - x + x^2 - x^3).
a(n) = A010879(A000225(n)).
a(n) = A000689(n) - 1.
a(n) = (1+(-1)^n)*(-1)^(n*(n-1)/2)/2 + 3*(1-(-1)^n)*(-1)^(n*(n+1)/2)/2 + 4 for n > 0, a(0) = 0. [Bruno Berselli, Jan 13 2016]
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = a(n-4) for n>4.
a(2k+2) = A010703(k), a(2k+1) = A010688(k). (End)
From Wesley Ivan Hurt, Jul 06 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 3.
a(n) = 4 + cos(n*Pi/2) - 3*sin(n*Pi/2) for n > 0. (End)
E.g.f.: -5 + cos(x) - 3*sin(x) + 4*exp(x). - Ilya Gutkovskiy, Jul 06 2016
Showing 1-6 of 6 results.