cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A227695 Expansion of psi(x)^2 * phi(-x)^6 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -10, 37, -50, -30, 128, -25, -34, -320, 310, 410, -370, -87, -410, 320, 30, 500, 384, -630, -640, -359, 300, -326, 2560, -110, -1098, -1280, -370, 1490, -1850, 269, 1500, 1216, 640, 570, -3328, 340, -2010, -1110, 1790, 768, 3200, 303, 750, -1600, -442
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 10*x + 37*x^2 - 50*x^3 - 30*x^4 + 128*x^5 - 25*x^6 - 34*x^7 - 320*x^8 + ...
G.f. = q - 10*q^5 + 37*q^9 - 50*q^13 - 30*q^17 + 128*q^21 - 25*q^25 - 34*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^5 / QPochhammer[ x^2])^2, {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^5 / eta(x^2 + A))^2, n))};

Formula

Expansion of q^(-1/4) * (eta(q)^5 / eta(q^2))^2 in powers of q.
Expansion of phi(-x)^5 * f(-x^2)^3 = phi(-x)^2 * f(-x)^6 in powers of x where phi(), f() are Ramanujan theta functions.
Euler transform of period 2 sequence [ -10, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8192 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227317.
G.f.: (Product_{k>0} (1 - x^k)^5 / (1 - x^(2*k)))^2.
Convolution of A000729 and A104794.

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    

A209941 Expansion of f(x)^6 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 9, -10, -30, 0, 11, -42, 0, 70, 18, 54, 49, -90, 0, 22, -60, 0, -110, 0, 81, -180, -78, 0, 130, 198, 0, 182, -30, -90, 121, -84, 0, 0, 210, 0, -252, 102, -270, -170, 0, 0, -69, -330, 0, 38, 420, 0, -190, 390, 0, 108, 0, 0, 0, 300, 99, -442, 210, 0, 418
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Number 59 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*x + 9*x^2 - 10*x^3 - 30*x^4 + 11*x^6 - 42*x^7 + 70*x^9 + ...
G.f. = q + 6*q^5 + 9*q^9 - 10*q^13 - 30*q^17 + 11*q^25 - 42*q^29 + 70*q^37 + ...
		

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1-(-x)^k)^6,k=1..n), x,n+1),x,n),n=0..70); # Muniru A Asiru, Aug 12 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[QPochhammer[ x^2]^18 / (QPochhammer[ x] QPochhammer[ x^4])^6, {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    CoefficientList[Series[(QPochhammer[x^2]^3/(QPochhammer[x] QPochhammer[x^4]))^6, {x, 0, 50}], x] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A) * eta(x^4 + A)))^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, A = factor(4*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4==3, if( e%2, 0, p^e), for( i=1, sqrtint(p\2), if( issquare(p - i^2, &y), x=i; break)); a0=1; a1 = y = 2 * (x^2 - y^2) * (-1)^((p%8==5) + y); for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))};

Formula

Expansion of q^(-1/4) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^6 in powers of q.
Euler transform of period 4 sequence [6, -12, 6, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 512 (t/i)^3 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^e if p == 3 (mod 4), else b(p^e) = b(p) * b(p^(e-1)) - p^2 * b^(p^(e-2)) if p == 1 (mod 4).
G.f.: Product_{k>0} (1 - (-x)^k)^6.
a(n) = (-1)^n * A000729(n). a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 9 * a(n).
Convolution square of A133089. Convolution cube of A208845. - Michael Somos, Jun 09 2015

A258739 Expansion of (f(-x)^3 / f(-x^2))^6 - 64 * x * (f(-x^2)^3 / f(-x))^6 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -82, -243, -1194, 2242, 0, 3599, 2950, 0, -12242, -20950, 19926, -16807, 7294, 0, 18950, 97908, 0, -88806, 0, 59049, -183844, 51050, 0, -92142, -98002, 0, 246486, 118706, 290142, -161051, -38868, 0, 0, 75658, 0, -241900, 47614, -544806, -493658, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.
Denoted by g_6(q) in Cynk and Hulek on page 8 as a level 32 cusp form of weight 6.

Examples

			G.f. = 1 - 82*x - 243*x^2 - 1194*x^3 + 2242*x^4 + 3599*x^6 + 2950*x^7 + ...
G.f. = q - 82*q^5 - 243*q^9 - 1194*q^13 + 2242*q^17 + 3599*q^25 + 2950*q^29 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(32), 6), 165); A[1]  - 82*A[5] - 243*A[9] - 1194*A[13] + 2242*A[16];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^3 / QPochhammer[ x^2])^6 - 64 x (QPochhammer[ x^2]^3 / QPochhammer[ x])^6, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^2 + A))^6 - 64 * x * (eta(x^2 + A)^3 / eta(x + A))^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if(n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if(p==2, 0, p%4==3, if(e%2, 0, (-p)^(5*e/2)), y = -sum(i=0, p-1, kronecker(i^3-i, p)); a0=2; a1=y; for(i=2, 5, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for(i=2, e, x=y*a1 -p^5*a0; a0=a1; a1=x); a1)))};
    

Formula

Expansion of q^(-1/4) * ((eta(-q)^3 / eta(-q^2))^6 - 64 * (eta(-q^2) / eta(-q))^6) in powers of q.
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(5*e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = -(32^3) (t/i)^6 f(t) where q = exp(2 Pi i t).
Previous Showing 11-14 of 14 results.