A093345
a(n) = n! * {1 + Sum[i=1..n, 1/i*Sum(j=0..i-1, 1/j!)]}.
Original entry on oeis.org
1, 2, 6, 23, 108, 605, 3956, 29649, 250892, 2367629, 24662700, 281153801, 3482350724, 46572620757, 668943488084, 10271127486065, 167892667249116, 2911049382788189, 53365747562592092, 1031352659792534169
Offset: 0
-
a[n_] := n! (1+Sum[1/i Sum[1/j!, {j, 0, i-1}], {i, 1, n}])
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Oct 05 2018 *)
-
a(n)=n!+n!*sum(i=1,n,1/i*sum(j=0,i-1,1/j!))
A233744
Numbers p = a(n) such that p divided by (n-1)! is equal to the average number of elements of partition sets of n elements excluding sets with a singleton.
Original entry on oeis.org
1, 2, 8, 36, 200, 1300, 9720, 82180, 775520, 8082180, 92205800, 1143084580, 15302486160, 220019440420, 3381685263320, 55333244924100, 960361672886720, 17622501030879940, 340893902373527880, 6933456765092580580, 147919915357498809200, 3303011756746128625380
Offset: 2
For example, if, among 5 players A,B,C,D,E, A takes C and C takes B and B takes A, one loop would be ACB and the other loop would be DE. No single element loop is allowed.
For n = 2, the only possible loop is a 2 elements loop AB ==> a(2) = 1.
for n = 3, the only possible loop is a 3 elements loop ABC or ACB ==> a(3) = 2 as a(3) / 2! = 1.
for n = 4, there are two types of loop, the ABCD loop and AB + CD loops, there is 2 chances out of 3 to get the ABCD type loop and 1 chance out of 3 to get the "AB + CD" configuration. The average number of loop is therefore 2/3 X 1 + 1/3 X 2 = 4/3 = 8 / 6 = a(4)/3!.
for n = 5, there are two types of loop, the ABCDE loop and ABC + DE loops, there is 2 chances out of 4 to get the ABCDE type loop and 2 chance out of 4 to get the "ABC + DE" configuration. The average number of loop is therefore 2/4 X 1 + 2/4 X 2 = 6/4 = 36 / 24 = a(5)/4!.
-
S[1] = 1;
S[n_] := S[n] = 1 + 1/(n-1) (S /@ Range[2, n-2] // Total);
a[n_] := (n-1)! S[n];
a /@ Range[2, 99] (* Jean-François Alcover, Sep 19 2020 *)
-
S(n)=if(n<2,1,1+sum(i=2,n-2,S(i))/(n-1)); a(n)=(n-1)!*S(n) \\ Ralf Stephan, Dec 17 2013
-
from sympy import factorial, Integer
angel=[0,0,1,1]
A233744=[1,2]
n = 20
for i in range(4,n):
new = 1+sum(angel[:-1])/Integer(i-1)
angel.append(new)
A233744.append(new*factorial(i-1))
print(A233744)
A360174
Triangle read by rows. T(n, k) = (k + 1) * abs(Stirling1(n, k)).
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 4, 9, 4, 0, 12, 33, 24, 5, 0, 48, 150, 140, 50, 6, 0, 240, 822, 900, 425, 90, 7, 0, 1440, 5292, 6496, 3675, 1050, 147, 8, 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9, 0, 80640, 328752, 472496, 336420, 134694, 31752, 4368, 324, 10
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 0, 2, 3;
[3] 0, 4, 9, 4;
[4] 0, 12, 33, 24, 5;
[5] 0, 48, 150, 140, 50, 6;
[6] 0, 240, 822, 900, 425, 90, 7;
[7] 0, 1440, 5292, 6496, 3675, 1050, 147, 8;
[8] 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9;
-
T := (n, k) -> (k + 1)*abs(Stirling1(n, k)):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
A000775
a(n) = n! * (n + 1 + 2*Sum_{k=1...n} 1/k).
Original entry on oeis.org
1, 4, 12, 46, 220, 1268, 8568, 66456, 582048, 5681952, 61174080, 720089280, 9199906560, 126783809280, 1874605662720, 29601115891200, 497155992883200, 8849184886886400, 166399076525875200, 3296032301811916800, 68596838245232640000, 1496490349337948160000
Offset: 0
-
Table[n! (n + 1 + 2*Sum[1/k, {k, n}]), {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *)
A349782
Triangle read by rows, T(n, k) = Sum_{j=0..k} |Stirling1(n, j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 5, 6, 0, 6, 17, 23, 24, 0, 24, 74, 109, 119, 120, 0, 120, 394, 619, 704, 719, 720, 0, 720, 2484, 4108, 4843, 5018, 5039, 5040, 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320, 0, 40320, 149904, 268028, 335312, 357761, 362297, 362843, 362879, 362880
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 2, 5, 6;
[4] 0, 6, 17, 23, 24;
[5] 0, 24, 74, 109, 119, 120;
[6] 0, 120, 394, 619, 704, 719, 720;
[7] 0, 720, 2484, 4108, 4843, 5018, 5039, 5040;
[8] 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320;
-
T := (n, k) -> add(abs(Stirling1(n,j)), j = 0..k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
T[n_, k_] := Sum[Abs[StirlingS1[n, j]], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 09 2021 *)
-
T(n, k) = sum(j=0, k, abs(stirling(n, j, 1))); \\ Michel Marcus, Dec 09 2021
A336746
Triangle read by rows: T(n,k) = (n-k-1+H(k+1))*((k+1)!) for 0 <= k <= n where H(k+1) = Sum_{i=0..k} 1/(i+1) for k >= 0.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 3, 5, 11, 26, 4, 7, 17, 50, 154, 5, 9, 23, 74, 274, 1044, 6, 11, 29, 98, 394, 1764, 8028, 7, 13, 35, 122, 514, 2484, 13068, 69264, 8, 15, 41, 146, 634, 3204, 18108, 109584, 663696, 9, 17, 47, 170, 754, 3924, 23148, 149904, 1026576, 6999840
Offset: 0
The triangle starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=================================================================
0 : 0
1 : 1 1
2 : 2 3 5
3 : 3 5 11 26
4 : 4 7 17 50 154
5 : 5 9 23 74 274 1044
6 : 6 11 29 98 394 1764 8028
7 : 7 13 35 122 514 2484 13068 69264
8 : 8 15 41 146 634 3204 18108 109584 663696
9 : 9 17 47 170 754 3924 23148 149904 1026576 6999840
...
Comments